Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
cover
Rizki Pramayuda
"Kelapa sawit merupakan tanaman budidaya penghasil minyak nabati yang mempunyai nilai ekonomis tinggi. Di Indonesia, Provinsi Riau tercatat sebagai provinsi yang memiliki luas perkebunan terbesar. Dengan luas lahan kelapa sawit di Provinsi Riau yang begitu besar, maka penting untuk mengetahui kondisi terkini umur dari tanaman kelapa sawit. Tujuan dari penelitian ini adalah untuk mengestimasi umur tanaman dengan metode regresi polinomial kuadratik serta menganalisis pola spasial sebaran umur tanaman kelapa sawit di Provinsi Riau. Penelitian ini menggunakan transformasi indeks vegetasi NDVI dan EVI yang diekstraksi dari Citra Landsat 8 – OLI Surface Reflectance. Proses akuisisi data, pengolahan data, analisis data hingga pemetaan menggunakan platform Google Earth Engine (GEE). Metode klasifikasi menggunakan Machine Learning, seperti; SVM, Random Forest dan CART untuk kemudian dibandingkan tingkat akurasinya. Estimasi umur tanaman didapatkan dari hasil pemodelan regresi polinomial kuadratik. Hasil penelitian menggunakan Machine Learning didapatkan hasil berupa tingkat akurasi yang berbeda, yakni: SVM untuk akurasi keseluruhan sebesar 98,6 % dan akurasi kappa sebesar 0,979, Random Forest untuk akurasi sebesar 97,43 % dan 0.96, CART akurasi sebesar 97,43 % dan 0.96. Sebaran umur berdasarkan faktor fisik ketinggian didominasi oleh kelompok umur dewasa terutama pada ketinggian 0-5 mdpl. Begitu pula dengan faktor fisik kemiringan lereng yang di dominasi oleh kelompok umur dewasa dan muda terutama pada kemiringan lereng 0-8 % dan 15-30 %. Sementara pada faktor fisik jarak dari sungai setiap jarak 2000meter secara keseluruhan didominasi oleh kelompok umur dewasa namun pada jarak terdekat dengan sungai yakni 0-2000meter didominasi oleh kelompok umur muda.

Oil palm is a cultivated plant that produces vegetable oil that has high economic value. In Indonesia, Riau Province is listed as the province with the largest plantation area. With the large area of ​​oil palm in Riau Province, it is important to know the current condition of the age of the oil palm plantation. The purpose of this study was to estimate the age of the plant by using quadratic polynomial regression method and to analyze the spatial pattern of the age distribution of oil palm plants in Riau Province. This study uses the transformation of the NDVI and EVI vegetation indices extracted from Landsat 8 – OLI Surface Reflectance Imagery. The process of data acquisition, data processing, data analysis to mapping using the Google Earth Engine (GEE) platform. The classification method uses Machine Learning, such as; SVM, Random Forest and CART to then compare the level of accuracy. The estimated age of the plant was obtained from the results of quadratic polynomial regression modeling. The results of the research using Machine Learning obtained results in the form of different levels of accuracy, namely: SVM for an overall accuracy of 98.6% and kappa accuracy of 0.979, Random Forest for an accuracy of 97.43% and 0.96, CART accuracy of 97.43% and 0.96. The age distribution based on the physical height factor is dominated by the adult age group, especially at an altitude of 0-5 meters above sea level. Likewise with the physical factor of the slope which is dominated by the adult and young age groups, especially on the slopes of 0-8% and 15-30%. Meanwhile, on the physical factor, the distance from the river every 2000 meters is dominated by the adult age group, but at the closest distance to the river, 0-2000 meters, it is dominated by the young age group. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Goldy Tanjung Wijaya
"ABSTRAK
Pembuangan makanan merupakan masalah serius di Indonesia. Berdasarkan data Barilla Center for Food and Nutrition, Indonesia menempati urutan kedua dalam pembuangan makanan per orang setiap tahunnya. Data dari FAO juga menunjukkan bahwa setiap tahunnya terdapat 13 juta metrik ton makanan yang terbuang secara percuma, yang mana sama dengan konsumsi 11% populasi Indonesia (sekitar 28 juta penduduk) setiap tahunnya. Salah satu faktor terjadinya pembuangan makanan adalah ketidaktahuan konsumen makanan mengenai kapan makanan tersebut akan membusuk. Tidak semua makanan tertera waktu kedaluwarsanya, terutama makanan seperti daging ayam yang dijual di pasar tradisional dan sebagian supermarket. Andaikata terdapat waktu kedaluwarsa sekalipun, bisa jadi waktu kedaluwarsa dari daging ayam tersebut kurang akurat karena hanya mengikuti SOP supermarket yakni bahan makanan harus terjual dalam kurun waktu tiga hari. Untuk mengatasi masalah tersebut, riset ini bertujuan untuk merancang sebuah alat yang bisa mendeteksi waktu kedaluwarsa daging berbasis IoT (Internet of Things). Alat IoT ini dikembangkan mengandalkan sensor gas MQ137 untuk mendeteksi kadar NH3 yang dikeluarkan oleh daging. Hasil deteksi dari sensor akan dikirimkan melalui internet ke Firebase. Data dari Firebase akan diolah dengan metode regresi polinomial untuk menghasilkan waktu prediksi kedaluwarsa daging. Waktu prediksi pada akhirnya dapat diakses melalui sebuah aplikasi Android."
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurma Nugraha
"Analisis regresi merupakan suatu metode statistik untuk menyelidiki dan memodelkan hubungan antara satu variabel respon Y dengan satu atau lebih variabel prediktor X . Hubungan antara variabel prediktor X dan variabel respon Y secara umum dapat dimodelkan dengan sebuah fungsi regresi. Menentukan fungsi taksiran regresi dapat dilakukan secara parametrik dan nonparametrik. Dalam tugas akhir ini fungsi regresi ditaksir secara nonparametrik dengan metode regresi polinomial lokal. Regresi polinomial lokal adalah suatu metode regresi nonparametrik, dengan fungsi regresi ditaksir menggunakan bentuk polinomial. Jika pada regresi polinomial biasa persamaan regresi di-fit untuk seluruh wilayah data maka dalam regresi polinomial lokal persamaan regresi di-fit sepotong-sepotong. Kemulusan kurva dari taksiran regresi ini tergantung pada pemilihan parameter pemulus atau bandwidth, sehingga diperlukan pemilihan bandwidth yang optimal, yaitu bandwidth yang meminimumkan GCV. Dalam aplikasi metode regresi polinomial lokal dibandingkan dengan metode Nadaraya-Watson. Hasil yang diperoleh adalah metode regresi polinomial lokal akan baik menaksir data yang nilainya menyimpang jauh dibandingkan nilai data yang lain, sedangkan metode Nadaraya-Watson akan baik menaksir pada data yang berkumpul."
Depok: Universitas Indonesia, 2009
S27689
UI - Skripsi Open  Universitas Indonesia Library