Penelitian ini bertujuan untuk mengidentifikasi perilaku belanja konsumen, menentukan segmentasi konsumen dan mengidentifikasi konsumen berdasarkan wilayah konsumen Bukku.id. Penelitian ini menggunakan data transaksi pada periode 1 September 2017 hingga 17 September 2018. Data diolah dengan analisis Recency, Frequency, Monetary (RFM) dan clustering untuk membentuk segmentasi konsumen. Selanjutnya, analisis pareto diberlakukan dalam menentukan penerbit dan penulis yang layak diprioritaskan untuk memaksimalkan hasil/return dengan meminimalkan usaha/effort. Pemetaan terhadap lokasi konsumen untuk pareto penulis ditentukan agar memberikan pemahaman untuk perbaikan promosi dan strategi pemasaran offline.
Hasil dari penelitian ini menunjukkan adanya tiga jenis profil konsumen yang berbeda berdasarkan analisis RFM dan clustering. Profil konsumen yang dipetakan terhadap penerbit dan penulis akan memberikan perusahaan keuntungan dalam memprioritisasi usaha dalam mengembangkan pola treatment terhadap penerbit dan penulis. Pengembangan offline marketing juga dapat dibangun karena mengetahui analisis lokasi konsumen yang ada.
The purpose of this research is to identify customer purchase behavior, form customer segmentation, and identify customer address of Bukku.id. this research uses customer purchase data of Bukku.co.id in the period 1 September 2017 – 17 September 2018. RFM method and clustering are used to identify customer segmentation. Then, pareto analysis results which publishers and authors need to be concerned for prioritizing effort in order to gain maximum benefit. Customer address or location has been mapped based on priority authors to determine promotion and offline marketing strategy.
The results of this research show three customer cluster based on RFM and clustering analysis. Each cluster has different characteristic and it can determine which strategy suit to approach their customers. Customer profile based on authors and publisher could also benefit the company to prioritize any treatments relate to them. Better offline marketing strategy can be developed by knowing location analysis
Tujuan - Tujuan dari penelitian ini adalah untuk menghasilkan insight dan rekomendasi yang relevan dan dapat ditindaklanjuti dari berbagai sumber data maskapai penerbangan yang terkait dengan produk, pelanggan, kanal penjualan, dan transaksi. Insight ini dapat bermanfaat untuk mendukung kegiatan penjualan dan pemasaran.
Desain / metodologi / pendekatan - Penelitian ini melakukan proses analisis big data. Pertama, sumber data yang terkait dengan aktivitas pelanggan dan produk Garuda Indonesia perlu dikumpulkan, disiapkan, dan diintegrasikan ke dalam satu platform big data. Kemudian, data terintegrasi dianalisis dan diproses melalui pendekatan analisis big data. Metode data aggregation, analisis cluster, dan analisis pareto digunakan untuk menganalisis insight. Model analisis RFM digunakan untuk menghitung customer value. Untuk segmentasi pelanggan, metode clustering digunakan. Kemudian, analisis campaign media dan konten digunakan untuk mengukur efektivitas proses campaign.
Hasil - Penelitian ini menghasilkan kerangka analisis bauran pemasaran untuk maskapai penerbangan menggunakan pendekatan analisis big data yang mencakup elemen 5P (Product, Pricing, Place, Promotion, and People).
Purpose – The purpose of this research is to generate relevant, actionable insight and recommendation from various airlines’ data sources related to Airlines’ products, customers, channels, and transactions. This insight can be beneficial to support sales and marketing campaign activity.
Design/methodology/approach – This research conducts big data analytics process and experimental analysis. First, data sources related to customer’s activities and Garuda Indonesia’s products need to be collected, prepared, and integrated into a single big data platform. Then, the integrated data is analyzed and processed through big data analytics approach. Data aggregation technique, cluster analysis, and pareto analysis are used for analyzing the insight. RFM model and analysis is used to calculate customer value. For segmenting customer, the clustering method is used. Therefore, analysis of campaign medium and content is used to measure the effectiveness of the campaign process.
Result – This research finds that a marketing mix framework analysis for airlines using big data analytics approach covering 5P element (Product, Pricing, Place, Promotion, and People).