Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Muhammad Alfareza Mahendra
"Jumlah kasus positif COVID-19 yang telah terkonfirmasi di Indonesia saat ini telah melebihi angka 6,4 juta. Walaupun angka kasus kian menurun, aturan menjaga jarak harus tetap dipatuhi. Aturan untuk menjaga jarak atau menjauhi kerumunan juga diterapkan di sekolah-sekolah, namun saat ini belum ada sistem yang dapat memonitoring hal tersebut. Tujuan dari penelitian ini adalah membangun sebuah sistem pendeteksian tingkat kerumunan orang dalam ruangan kelas untuk membantu menekan angka kerumunan yang terjadi di sekolah-sekolah, selain itu sistem yang dibangun dapat mempermudah memantau kerumunan sehingga dapat memperkecil area penyebaran virus COVID-19. Sistem yang dibangun menggunakan algoritma deteksi dan segmentasi pada Mask R-CNN. Sistem yang dirancang dapat mendeteksi objek orang, kerumunan, dan kepadatan dalam ruangan. Pengujian sistem dilakukan menggunakan metrik akurasi dan membandingkan kepadatan hasil perhitungan dengan hasil segmentasi. Pengujian dilakukan di area Indoor ruang kelas dan menggunakan kamera webcam. Hasil pengujian menggunakan matriks konfolusi menunjukkan tingkat akurasi deteksi objek manusia yaitu 92,42 %, sedangkan tingginya performa deteksi adalah 96,5%. Sedangkan Error terendah dan tertinggi yang di dapat pada pengukuran kepadatan masing-masing adalah 7,51% dan 0,79%

The number of confirmed positive cases of COVID-19 in Indonesia has now exceeded 6.4 million. Even though the number of cases is decreasing, the rules for maintaining distance must still be obeyed. Rules to maintain distance or stay away from crowds are also implemented in schools, but currently there is no system that can monitor this. The purpose of this research is to build a crowd level detection system in classrooms to help reduce crowd numbers that occur in schools, besides that the system built can make it easier to serve crowds so as to reduce the area of spread of the COVID-19 virus. The system built uses detection and segmentation algorithms on Mask R-CNN. The designed system can detect objects, people, crowds, and density in the room. System testing is carried out using measurement metrics and comparing the calculated density with segmentation results. Testing was carried out in the indoor area of the classroom and using a webcam camera. The test results using the convolution matrix show that the accuracy of human object detection is 92.42%, while the high detection performance is 96.5%. While the lowest and highest errors that can be achieved in density measurements are 7.51% and 0.79%, respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pardede, Maria Angel Margareth
"Bahasa isyarat umumnya dilakukan oleh tuna rungu dan tuna wicara yang menimbulkan kesenjangan dalam berkomunikasi khususnya saat melamar pekerjaan. Ada hambatan komunikasi yang dirasakan saat proses pencarian kerja dimana pada tahun 2020 menyebutkan bahwa penyandang disabilitas yang bekerja sebanyak 7,67 juta orang (5,98% dari total pekerja di Indonesia) dibandingkan dengan jumlah pekerja dengan disabilitas di Indonesia mencapai 720.748 orang (0,53% dari total pekerja di Indonesia) pada tahun 2022 menurut BPS (Badan Pusat Statistik). Penurunan persentase dalam lapangan kerja sebagian besar disebabkan oleh praktik perekrutan yang diskriminatif oleh banyak perusahaan. Jadi, dibutuhkan sistem deteksi bahasa isyarat yang dapat mempermudah dalam penerjemahan bahasa isyarat supaya kesempatan pengguna bahasa isyarat sama dengan semua orang dalam proses pelamaran kerja dan mendapatkan pekerjaan yang layak. Skenario pengambilan data adalah dengan 2 skenario, yaitu data non augmented dan augmented. Proses training dengan dataset yang terdiri atas 348 citra training yang lalu diaugmentasi sehingga berjumlah 1.044 citra training. Hasil pengujian dengan real-time testing dilakukan dengan evaluasi model menggunakan parameter akurasi sistem (confidence score), precision, recall, dan F1 Score untuk setiap model dimana nilai confidence score model Faster R-CNN dan RetinaNet adalah 96,67% : 93,33%. Selain itu, perbandingan nilai F1 Score untuk model Faster R-CNN dan RetinaNet adalah 0,98 : 0,97, tingkat akurasi mAP Faster R-CNN dan RetinaNet yang non augmented adalah 95,3% : 90,6%, sedangkan mAP Faster R-CNN dan RetinaNet yang augmented adalah 92,1% : 88,2%. Melalui hasil tersebut diperoleh bahwa kedua model memiliki presisi yang lebih rendah saat sudah diaugmentasi. Maka dari itu, algoritma Faster R-CNN memiliki hasil presisi lebih akurat dibandingkan algoritma RetinaNet.

Sign language is generally used by the deaf and speech impaired which causes errors in communication, especially when applying for jobs. There are communication barriers that are felt during the job search process where in 2020 it is stated that 7,67 million people with disabilities work (5,98% of total workers in Indonesia) compared to the number of workers with disabilities in Indonesia reaching 720,748 people (0,53% of total workers in Indonesia) in 2022 according to BPS (Badan Pusat Statistik). The percentage decline in employment is largely due to discriminatory hiring practices by many companies. So, a sign language detection system is needed that can make it easier to translate sign language so that sign language users have the same opportunities as everyone else in the job application process and getting a decent job. The data collection scenario is with 2 scenarios, namely non-augmented and augmented data. The training process uses a dataset consisting of 348 training images which are then augmented so that the total is 1.044 training images. Test results using real-time testing were carried out by evaluating the model using system accuracy parameters (confidence score), precision, recall, and F1 Score for each model where the Confidence Score value for the Faster R-CNN and RetinaNet models was 96,67% : 93,33%. In addition, the comparison of the F1 Score values​​for the Faster R-CNN and RetinaNet models is 0,98 : 0,97, the accuracy level of the non-augmented mAP Faster R-CNN and RetinaNet is 95,3% : 90,6%, while the mAP Faster R-CNN and augmented RetinaNet are 92,1% : 88,2%. From these results, it was found that the two models had lower precision when they were augmented. Therefore, the Faster R-CNN algorithm has more accurate precision results than the RetinaNet algorithm."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fathurrahman
"Menjaga keberlanjutan performa maksimal panel surya menjadi tantangan terbesar pembangkit listrik tenaga surya (PLTS) saat ini. Hal ini dikarenakan panel surya rentan terhadap kegagalan yang mengurangi daya keluaran akibat faktor lingkungan. Konsekuensinya, ekspektasi payback period PLTS cukup panjang berpotensi tidak tercapai. Sehingga, operasi pemeliharaan harus rutin dilakukan menggunakan termografi karena beberapa kegagalan tidak terlihat kasat mata. Namun demikian, apabila pemeliharaan dilakukan secara manual untuk PLTS berskala besar berkapasitas diatas 1 MW dengan luas 2,3-2,9 ha, akan menghabiskan banyak waktu dan sumber daya. Metode aerial infrared thermography (AIRT) memberikan operasi pemeliharaan yang cepat dan efisien dengan mengambil citra termal radiometrik secara otomatis berdasarkan pengaturan waypoint pada unmanned aerial vehicle (UAV). Kemudian pendeteksian kegagalan panel surya dilakukan menggunakan algoritma pengolahan citra yang umumnya adalah digital image processing (DIP). Akan tetapi, DIP membutuhkan penyesuaian parameter untuk setiap citra barunya. Oleh karena itu, penelitian ini menggunakan deep learning (DL) untuk mendeteksi setiap jenis kegagalan panel surya monofacial dan bifacial. Himpunan data (dataset) citra termal yang disusun sudah memenuhi standar inspeksi yaitu nilai irradiasi diantara 500-700 W/m2. Lalu, dilakukan skenario deteksi untuk PLTS dengan panel monofacial, bifacial, atau campuran. Hasil evaluasi model DL menunjukkan mean average precision (mAP) setiap skenario bernilai diatas 80% sehingga dapat diaplikasikan pada operasio pemeliharaan PLTS skala besar.

Maintaining the maximum performance of solar panels poses the foremost challenge for solar photovoltaic power plants in this era. This is due to panel’s vulnerability to photovoltaic (PV) defect which reduces power output due to environmental factors. Consequently, the expected payback period which has been established for a considerable duration may not be achieved. Therefore, routine maintenance operations using thermography are necessary as certain failures are not visually detectable. Nevertheless, performing these operations manually on large-scale solar power plants with a capacity above 1 MW and an area of 2.3-2.9 ha would consume a significant amount of time and resources. The aerial infrared thermography (AIRT) technique enables fast and efficient maintenance operations by automatically capturing radiometric thermal images utilizing unmanned aerial vehicle (UAV) configured with predefined waypoint settings. Subsequently, the PV defect detection is typically performed using digital image processing (DIP) algorithm. However, DIP requires parameter adjustments for each new image. Hence, this study utilizes deep learning (DL) to detect different types of PV defect for both monofacial and bifacial solar panels. The constructed thermal image dataset adheres to inspection standards, which irradiance values ranging from 500-700 W/m2. Then, detection scenarios were conducted for solar power plants utilizing monofacial, bifacial, or mixed panels. The evaluations results of the DL model yielded mean average precision (mAP) values above 80% for each scenario, confirming its applicability in large-scale solar power plants maintenance activities."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mario Claudius
"Obesitas merupakan salah satu masalah kesehatan yang sering dijumpai hingga saat ini. Menurut World Health Organization, pada tahun 2016 terdapat sekitar 650 juta orang dewasa yang mengalami masalah obesitas. Obesitas sendiri dapat meningkatkan risiko pada berbagai macam penyakit seperti penyakit jantung, diabetes, dan kanker jika tidak dicegah. Salah satu penyebab dari obesitas adalah konsumsi makanan fast food yang berlebihan. Konsumsi makanan fast food yang berlebihan ini seringkali terjadi karena kurangnya informasi mengenai jumlah kalori yang terkandung pada makanan fast food sehingga sulit untuk mengontrol jumlah makanan fast food yang dikonsumsi agar tidak menyebabkan obesitas. Oleh karena itu, dalam penelitian ini dilakukan perancangan aplikasi dengan sistem untuk menghitung estimasi jumlah kalori yang terkandung pada makanan cepat saji menggunakan model Mask R-CNN. Berdasarkan pengujian pada model Mask R-CNN dalam melakukan deteksi pada objek makanan cepat saji, didapatkan nilai mAP 0,636 dan nilai F1 score 0,599. Sedangkan berdasarkan hasil pengujian pada algoritma yang digunakan untuk melakukan perhitungan estimasi jumlah kalori makanan cepat saji, didapatkan tingkat kesalahan kalkulasi berupa nilai MAE sebesar 2,290 kal/g dan RMSE sebesar 2,342 kal/g. 

Obesity is one of the most common health problem until now. According to World Health Organization, there are approximately 650 millions adult who have obesity problem at 2016. If not prevented, obesity itself can increase the risk of various diseases such as heart disease, diabetes, and cancer. One of the causes of obesity is excessive consumption of fast food. This excessive consumption of fast food often happen due to lack of information about number of calories contained in fast food, making it difficult to control the amount of fast food consumed to prevent obesity. Therefore, this research conducts development of application to calculate the amount of calories contained in fast food using Mask R-CNN. Based on the testing result for Mask R-CNN ability to detect fast food object, 0,636 obtained as value of mAP and 0,599 obtained as value of F1 score. While based on the testing result of algorithm used to calculate the estimated amount of calories contained in fast food, the calculation error rate is obtained in the form of MAE value of 2,290 cal/g and RMSE value of 2,342 cal/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Muhammad Ferdiansyah
"Rumah sakit dalam menjalankan fungsinya sebagai salah satu fasilitas pelayanan kesehatan memiliki standar-standar pelayanan minimal. Salah satu dari standar pelayanan minimal tersebut adalah jenis pelayanan gizi. Sisa makanan yang tidak dimakan oleh pasien adalah salah satu indikator untuk pelayanan gizi. Agar indikator tersebut terpenuhi, maka sisa makanan yang tidak termakan oleh pasien harus kurang dari 20%. Sehingga, penulis melakukan penelitian pembuatan model untuk mengklasifikasikan sisa makanan pasien untuk membantu menentukan indikator keberhasilan pelayanan gizi di rumah sakit. Pengembangan penelitian ini diawali dengan pengumpulan dataset makanan dengan kelas “Sisa <20%” dan “Sisa >20%”. Dataset tersebut adalah data yang akan digunakan untuk proses training dan testing model. Sedangkan untuk model yang dikembangkan pada penelitian ini adalah model yang menggunakan arsitektur CNN dengan YOLOv5 dan arsitektur Faster R-CNN dengan Detectron2. Model yang dikembangkan ada sebanyak tiga buah, yaitu YOLOv5 epochs 100 dan 200 kemudian Faster R-CNN dengan iteration 2000. Berdasarkan hasil testing menggunakan test set, dapat dilakukan analisis pada confusion matrix untuk mendapatkan metrik precision, recall, dan F1-Score untuk tiap kelas dan akurasi model. Secara keseluruhan, model yang memiliki hasil terbaik untuk semua metrik tersebut adalah model Faster R-CNN dengan Detectron2. Pada kelas “Sisa <20%” metrik precision, recall, dan F1-Score tertinggi dicapai oleh model Faster R-CNN dengan nilai 80% pada semua metrik. Begitu juga untuk kelas “Sisa >20%” metrik precision dan F1-Score tertinggi dicapai oleh model Faster R-CNN dengan nilai 86% pada keduanya. Sedangkan nilai tertinggi untuk metrik recall pada kelas “Sisa>20%” dicapai oleh model YOLOv5 epochs 200 dengan nilai 87,5%. Kemudian untuk metrik akurasi dicapai nilai tertinggi oleh model Faster R-CNN dengan nilai 83,33%. Berdasarkan penelitian ini model Faster R-CNN lebih unggul dalam kemampuannya mengklasifikasikan sisa makanan dibandingkan dengan model YOLOv5.

Hospitals in carrying out their functions as one of the health service facilities have minimum service standards. One of the minimum service standards is nutrition services. Leftover food that is not eaten by the patient is one of the indicators for nutrition services. For the indicator to be met, the remaining uneaten food by the patient must be less than 20%. Therefore, the author conducted a research to create a model to classify patient food waste to help determine the success indicators of nutrition services in hospitals. The development of this research begins with the collection of food datasets with the classes "Sisa <20%" and "Sisa >20%" which respectively means less than 20% of leftovers and more than 20% of leftovers. These datasets are the data that will be used for the model training process. As for the proposed model, it uses CNN architecture with YOLOv5 and Faster R-CNN architecture with Detectron2. There are three models developed, namely YOLOv5 with 100 and epochs and Faster R-CNN with 2000 iterations. Based on the test results using the test set, the confusion matrix can be analyzed to obtain precision, recall, and F1-Score metrics for each class and overall model accuracy. Overall, the model that produces the best result for all these metrics is the Faster R-CNN model with Detectron2. In the "Sisa <20%" class, the highest precision, recall, and F1-Score metrics were achieved by the Faster R-CNN model with 80% on all metrics. Likewise, for the class “Sisa >20%" the highest precision and F1-Score metrics were achieved by the Faster R-CNN model with a value of 86% on both. While the highest value for the recall metric in the "Sisa >20%" class was achieved by the YOLOv5 epochs 200 model with a value of 87.5%. Then for the accuracy metric, the highest value was achieved by the Faster R-CNN model with a value of 83.33%. Based on this research, the Faster R-CNN model is superior in its ability to classify food waste compared to the YOLOv5 model.
"
Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Dokumentasi  Universitas Indonesia Library
cover
Gilbert Lauren
"Pelayanan di supermarket merupakan salah satu hal yang menjadi pertimbangan seseorang dalam menentukan kualitas dari sebuah supermarket. Antrian di supermarket merupakan salah satu penentu dari kualitas layanan yang dimiliki. Antrian tersebut dapat disebabkan berbagai hal, salah satunya adalah lamanya kasir dalam menyelesaikan transaksi yang dilakukan. Semakin lama transaksi berlangsung, semakin lama waktu yang dibutuhkan untuk dibutuhkan seorang pelanggan sehingga menyebabkan antrian terjadi. Salah satu penyebab lamanya transaksi dapat disebabkan karena proses pemindaian produk yang membutuhkan waktu cukup lama. Oleh karena itu, dengan membuat model pemindaian barcode yang cepat dan efisien berbasis deep learning menggunakan object detection, harapannya dapat membuat proses transaksi menjadi lebih cepat sehingga antrian yang terjadi dapat dikurangi. Dalam penilitian ini, model sistem akan membandingkan antara performa model YOLOv5 dengan Faster R-CNN yang kemudian ditambahkan image enhancement (Super Resolution) untuk dibandingkan dengan tujuan mencari tahu performa dan akurasinya. Hasil pengujian model pada tahap pelatihan menunjukkan model YOLOv5 merupakan model yang lebih akurat dan efisien dengan akurasi Mean Average Precission (mAP) sebesar 81,74%, penggunaan waktu pelatihan sebesar 1,6448 jam, dan loss pada epoch/step terakhir sebesar 0,0208. Hasil pengujian model menggunakan image enhancement (super resolution) menunjukkan peningkatan kualitas decode dari 67% menjadi sebesar 75,5% atau peningkatan sebesar 8,5% dengan super resolution tipe RRDB_PSNR. Kemudian hasil pengujian augmentasi rotasi pada pendeteksian barcode diagonal menunjukan peningkatan sangat signifikan dari 2% menjadi 80%. Pada pengujian terakhir dimana dataset yang digunakan sudah dilakukan augmentasi. Model yang di training memiliki penurunan dari mAP yang dihasilkan menjadi 71,7% dari yang sebelumnya sebesar 81,74% atau penurunan sekitar 10,04%
Service in supermarkets is one of the things that a person considers in determining the quality of a supermarket. Queues at supermarkets are one of the determinants of the quality of service they have. The queue can be caused by various things, one of which is the length of time the cashier completes the transaction. The longer the transaction lasts, the longer it will take for a customer to cause a queue to occur. One of the reasons for the length of the transaction can be due to the product scanning process which takes a long time. Therefore, by creating a fast and efficient barcode scanning model based on deep learning using object detection, it is hoped that it can make the transaction process faster so that queues that occur can be reduced. In this research, the system model will compare the performance of the YOLOv5 model with Faster R-CNN which is then added with image enhancement (Super Resolution) for comparison with the aim of finding out its performance and accuracy. The results of model testing at the training stage show that the YOLOv5 model is a more accurate and efficient model with an accuracy of Mean Average Precision (mAP) of 81.74%, training time usage of 1.6448 hours, and loss in the last epoch/step of 0.0208. The results of model testing using image enhancement (super resolution) show an increase in decoding quality from 67% to 75.5% or an increase of 8.5% with super resolution of type RRDB_PSNR.Then the results of the rotational augmentation test on diagonal barcode detection showed a very significant increase from 2% to 80%. In the last test where the dataset used has been augmented. The training model has a decrease from the resulting mAP to 71.7% from the previous 81.74% or a decrease of about 10.04%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rian Pramudia Salasa
"Solar filament adalah objek pada kromosfer atau korona matahari yang dapat menjadi indikator terjadinya aktivitas-aktivitas cuaca antariksa (space weather). Aktivitas-aktivitas tersebut dapat menimbulkan efek pada kehidupan di bumi seperti gangguan pada pembangkit listrik, kerusakan pada komponen satelit dan wahana luar angkasa, membahayakan aktivitas manusia di luar angkasa, mengakibatkan gangguan pada sistem berbasis komunikasi radio, dan lain-lain. Deteksi filament merupakan bagian penting dari aktivitas peramalan dan peringatan dini serta riset terhadap cuaca antariksa. Pengamatan filament dilakukan menggunakan teleskop dengan fiter Hydrogen-Alpha (H-Alpha). Hingga saat ini telah teradapat beberapa metode yang dikembangkan untuk melakukan deteksi filament pada citra H-Alpha secara otomatis. Namun metode-metode tersebut masih menggunakan algoritma tradisional yang berbasis intensity thresholding, yang mana sangat bergantung pada banyak langkah preprocessing untuk melakukan binerisasi citra H-Alpha. Penelitian ini memanfaatkan deep learning berbasis CNN yaitu Mask R-CNN untuk melakukan deteksi dan ekstraksi fitur-fitur matahari pada citra H-Alpha secara otomatis dan real-time. Hasil dari deteksi dan ekstraksi fitur ini kemudian disimpan ke dalam basis data hingga dapat digunakan dalam memenuhi kebutuhan data untuk aktivitas riset, peramalan, dan sistem peringatan dini. Citra yang digunakan dalam penelitian adalah citra H-Alpha milik Lembaga Penerbangan dan Antariksa Nasional (LAPAN), yang diambil pada bulan Oktober 2017 – Agustus 2018. Sistem yang dirancang dapat mendeteksi filament dan fitur-fitur matahari lainnya dalam waktu 0.3 detik dengan skor ketelitian hingga 0.95.

Solar filament is an object in the Sun’s chromosphere, in which its appearance used as indicator of Sun’s activites in term of space weather. The Sun’s activities itself affect human life in any ways, such as disturbance on power grids, errors on satellites and spacecrafts, anomalies on radio waves based systems, etc. Thus, solar filament detection is an important task on forecasting, early warning, and other research activities regerding the Sun on solar physics topic. Filament observation carried out using solar telescope equipped with Hydrogen-Alpha (H-Alpha) filter, and captured in an image using a capture device. There are some methods has developed to detect filament on H-Alpha images automatically. Most of them uses traditional algorithm based on intensity thresholding, which is very dependent on many preprocessing steps in the binarizing process. This study utilize CNN based deep learning named Mask R-CNN to perform real-time, automatic detection and ectraction of filaments and other solar features on H-Alpha images. The detection and extraction results then recorded in a database to satisfy data availability on solar activity related tasks. This study uses H-Alpha images obtained from Lembaga Penerbangan dan Antariksa Nasional (LAPAN), captured between October 2017 - August 2018. This study shows that the implemented Mask R-CNN based system detects filament and other solar features in approximately 0.3 seconds with 0.95 precision score."
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Michael Ahli
"Kerusakan pada pipa di dalam sistem transportasi fluida kapal sangat mungkin terjadi dan dapat menyebabkan dampak kerapuhan pada pipa yang dapat menyebabkan failure dan kebocoran pada pipa. Oleh karena itu inspeksi korosi pipa dilakukan untuk meminimalisir kerusakan yang dapat terjadi. Saat ini, untuk melakukan inspeksi pipa dapat dilakukan dengan memanfaatkan sinar infra merah, pigging dengan metode Magnetic Flux Leakage dan banyak metode lainnya termasuk inspeksi dengan mata telanjang. Keseluruhan metode tersebut dilakukan secara manual sehingga menimbulkan beberapa kerugian, diantaranya waktu inspeksi yang lama karena masih melibatkan tenaga manusia dalam proses menginspeksi dan keakuratan yang rendah terutama apabila inspeksi masih dilakukan dengan mata telanjang. Oleh karena itu dibutuhkan metode analisa yang lebih akurat yang dapat melakukan inspeksi secara cepat. Algoritma Deep Learning yakni Regional Convolutional Neural Network (R-CNN) diaplikasikan dalam tulisan ini dengan dibantu teknologi pengelihatan komputer (computer vision) menghasilkan metode analisa yang lebih cepat dan akurat. Tidak hanya analisa, R-CNN juga dapat mengklasifikasi jenis korosi dan kerusakan yang terjadi dalam pipa sehingga dapat sekaligus memberikan rekomendasi yang akurat dalam prosesnya, dengan akurasi yang didapat dari fungsi binary entropy didapati akurasi validation sebesar 96% dan akurasi testing sebesar 93%. R-CNN dengan pengembangan rekomendasi perbaikan kerusakan ini dapat menggantikan proses inspeksi perpipaan yang lama dan sulit menjadi cepat dan mudah.

Damage to pipes in the ship's fluid transportation system is highly likely and can cause fragility impacts on pipes that can cause failure and leakage of pipes. Therefore, pipe corrosion inspection is carried out to minimize the damage that can occur. Currently, to conduct pipe inspection can be done by utilizing infrared rays, pigging with magnetic flux leakage method and many other methods including inspection with the naked eye. The whole method is done manually so that it causes some losses, including a long inspection time because it still involves human energy in the process of inspecting and low accuracy, especially if the inspection is still carried out with the naked eye. Therefore, a more accurate analysis method is needed that can conduct inspections quickly. Deep Learning algorithm, Regional Convolutional Neural Network (R-CNN) is applied in this paper with the help of computer vision technology to produce faster and more accurate analytical methods. Not only the analysis, R-
CNN can also classify the type of corrosion and damage that occurs in the pipe so that it can simultaneously provide accurate recommendations in the process, with the accuracy obtained from the binary entropy function found training accuracy of 96% and validation accuracy of 95%. R-CNN with the development of these damage repair recommendations can replace the long and difficult piping inspection process to be quick and easy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zufar Ashshiddiqqi
"Indonesia merupakan negara maritim terbesar di dunia dengan banyak sekali ikan yang hidup di perairan Indonesia Hal ini membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan kuota untuk operasi penangkapan ikan serta pemasangan kamera pengawas, namun solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan mencegah terjadinya IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis ikan hasil tangkapan. Sistem dirancang menggunakan konsep object detection dan instance segmentation yang merupakan sebuah bidang dari machine learning, menggunakan toolbox MMDetection dengan algoritma Faster R-CNN dan GFL untuk metode object detection dan algoritma Mask R-CNN untuk metode instance segmentation. Dimana sistem tersebut merupakan model kecerdasan buatan yang dapat melakukan pendeteksian ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP @50 0,758, besar F1-Score 0,761, dan membutuhkan waktu untuk pelatihan selama 7 jam 32 menit. Selain itu, model tersebut juga mendapatkan akurasi yang lebih baik sebanyak 20% dari perbandingan dengan model object detection.

Indonesia, as the world's largest maritime country, is home to a vast variety of fish species in its waters. This reality poses numerous threats to Indonesia's fisheries sector. One significant challenge is illegal, unreported, and unregulated (IUU) fishing, which has considerable detrimental effects and causes substantial losses to the Indonesian fisheries industry. Several solutions have been proposed to address this problem, including the implementation of fishing quotas and the installation of surveillance cameras. However, these solutions have not yielded significant impacts in reducing and preventing IUU fishing. Hence, this research aims to develop a fish species detection system. The system is designed based on the concepts of object detection and instance segmentation, which are subfields of machine learning. The research utilizes the MMDetection toolbox with the Faster R-CNN and GFL algorithms for object detection, as well as the Mask R-CNN algorithm for instance segmentation. This artificial intelligence-based system enables the detection of captured fish to monitor the quantity of fish caught by fishermen, thereby significantly reducing IUU fishing. The research's best-performing system employs the instance segmentation model, achieving an mAP@50 score of 0.758, an F1-Score of 0.761, and requires a training time of 7 hours and 32 minutes. Moreover, this model also demonstrates a 20% improvement in accuracy compared to the object detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radyatama Nugraha
"Skripsi ini merupakan pengembangan dari teknologi video surveillance system atau sistem pengawasan video. Video surveillance system yang selama ini diterapkan untuk tujuan deteksi objek menggunakan suatu metode umum yaitu dual background model. Model tersebut bekerja dengan memisahkan latar depan dan latar belakang dari suatu video frame dan memposisikan target deteksi di latar depan sebagai output. Salah satu tujuan dari skripsi ini adalah melakukan pengembangan dari sistem tersebut agar dapat mengklasifikasikan objek yang terdeteksi menjadi abandoned, stolen, dan ghost region. Untuk mencapai tujuan tersebut, digunakan metode pemelajaran mesin Mask R – CNN yang dapat melakukan segmentasi objek berbasis pemaskeran. Selain dari Mask R – CNN, terdapat model pemelajaran mesin lain yang cukup umum digunakan untuk deteksi objek dan segmentasi objek yaitu model YOLACT. Penelitian ini menggunakan video situasi natural di tempat umum seperti stasiun atau jalanan yang akan diproses menggunakan dual background model dan kemudian disegmentasi menggunakan Mask R – CNN atau YOLACT. Hasil penelitian ini diharapkan bisa membuka wawasan tentang penggunaan model pemelajaran mesin dalam aplikasi object detection, sekaligus menganalisis model mana yang paling efektif dan efisien berupa hasil kuantitatif yaitu Frame Rate per Seccond ( FPS ), waktu segmentasi, serta Intersection Over Union ( IOU ).

This thesis is an advancement in video surveillance technology. The existing video surveillance system commonly employs a dual background model for object detection. This model functions by separating the foreground and background within a video frame and positions the detected target in the foreground as the output. One of the goals of this thesis is to enhance this system to classify detected objects into abandoned, stolen, and ghost regions. To achieve this, the Mask R-CNN machine learning method is used, which can perform object segmentation based on masking. Apart from Mask R-CNN, another commonly used machine learning model for object detection and segmentation is the YOLACT model. This research utilizes natural situation videos in public places like stations or streets, processed using the dual background model and then segmented using Mask R-CNN or YOLACT. The anticipated outcome of this study is to broaden insights into the use of machine learning models in object detection applications while analyzing which model is most effective and efficient for similar applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>