Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41 dokumen yang sesuai dengan query
cover
Hasyim
"ABSTRAK
Baja tahan karat austenitik adalah material logam yang sangat banyak
digunakan untuk alat-alat industri dan alat-alat transportasi, karena memiliki sifat
mekanik dan sifat fisik serta ketahanan terhadap korosi yang baik. Dalam masalah
ini telah dilakukan penelitian tentang penjelasan plat baja tahan karat austenitik
tipe 304 dengan metode GTAW (Gas Tungsten Arc Welding) dan SMAW (Shield
Metal Arc Welding) untuk menganalisa tentang aspek kekuatan mekanik serta
pengaruh terhadap presipitasi carbida. Guna mengetahui faktor yang berpengaruh
terhadap hasil lasan, maka dibuat variabel arus yaitu 125 A, 110 A, 105A dan 95A
dengan media pendingin udara dan air. Dari hasil percobaan ini dilakukan uji
metalografi, uji tarik, uji kekerasan. Pada uji mikro struktur di daerah deposit las,
sampel no. 4 memperlihatkan butiran besar yang tidak kontinyu sedangkan pada
sampel no. 7 terdapat porositi. Dari uji tarik diperoleh hasil, kedua sampel
tersebut putus pada daerah las-lasan dengan nilai kekerasan paling tinggi yaitu
172 Hv dan 168 Hv. Laju pendinginan mempengaruhi proses terjadinya presipitasi
carbida. Makin lambat waktu pendinginan semakin banyak jumlah presipitasi
carbida yang terjadi, seperti ditunjukkan pads spesimen GT 105/12, GT 125/12
dan SM 110/23. Dari photo mikro diperoleh perbedaan bahwa presipitasi carbida
pada batas butir dengan pendinginan udara lebih tampak hitam dibandingkan
dengan pendinginan air. Lebar pita daerah yang meugalami presipitasi tergantung
pada input panas yang diberikan.

Abstract
The austenitic corrosive resistive steel is a metallic material used
extensively in industrial and transportational equipments, it is said so due to they
have both good mechanical and physical properties as well as their good corrosive
resistive resistance. In this case, there had been done such a welding of an
austenitic resistive steel plate type 304 using both methods such as GTAW (Gas
Tungsten Arc Welding) to analyze the aspect of its mechanical strength and its
effect towards carbide?s precipitation To recognize its factor which effects the
result of welding, so there had been created many different variables of electrical
current such as 125 A, 110 A, 105 A and 95 A using both coolingmedias such as
air and water. From this experimental result there had been done such a
metallographic testing for both tensile testing and testing of its strength. For its
structural micro testing on the site of welding?s deposit, a no. 4 sample shown
such a big uncontinued granule, and for a no. 7 sample there are porosities. From
their tensile testing shown such many broken weldings with its highest strength of
172 Hv and 168 Hv respectively for its progressiveness of cooling which effect
the process of carbide?s precipitative creation, shown that, the length of time?s
cooling could determine, the number of carbide?s precipitation to be created, such
had been shown by the speciments of GT 105/12, GT 125/12 and SM 110/123.
From the micro photo there had been obtained, that there had been shown such a
different carbide?s precipitation, darker for a gzanule?s threshold with a more air
cooling compared to the water cooling. For the wideness of band, it is depend on
the heat input to be given. "
1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Maria Rini Setia
"Laboratorium Dasar Proses Kimia TGP FTUI digunakan untuk praktikum mahasiswa. jenis praktikum yang dilangsungkan di Lab. ini adalah praktikum kimia dasar (KD), kimia analitik-(KA) dan kimia fisika (KF). Lab. ini menghasilkan B3, yaitu Iogam berat yang terdiri dari Cu, Cr. Co, Al, Ag dan Zn. Selain ilu juga pelarut organik dan asam basa anorganik_ Kandungan awal Iogam berat dapat dilihat pada tabel 1. Penelitian ini bertujuan untuk mengidentitikasikan lcarakteristik dan kuantitas Iogam berat, meninjau kemungkinan proses pengendapan hidroksida, dan umuk mengetahui efisiensi penyisfhan logam berat.
Sebelum limbah diolah, maka terlebih dahulu disegregasi mengikuti pengelompokan yang dilakukan oleh Kenruc/qv University. Limbah Lab.DPK dapat dibagi menjadi sembilan kelompok, yaitu logam berat yang terdiri dari Cu, Fe, Al , Logam berat yang tergabung dengan senyawa thiosianat, kelompok krom valensi enam, besi yang tergabmmg bersama ion golongan halogen, logam barium, perhk, krom dan kobal, tembaga yang tergabung dengan tiosulfat.
Limbah yang diteliti adalah limbah yang dapat langsung diendapkan dengan hidroksida. Limbah ini terdapat pada modul 1, 4, 6 dan 7I<.D, I dan 4 KA serta 9KF. Pengolahan limbah dibagi menjadi lirnbah per modul, yang terdiri dad limbah mengandung Fe, SO42', dan ion golongan hal0gen(4KD) dan limbah mengandung Co dan Cr (4KA), per kelompok (mengandung Fe,Cu Al (1,6 dan 7KD)) dan campuran limbah (Cr, Co, Ag, Cu, Fe dan AI (l,6,7 KD, l dan 4KA, dan 9KF)).
Zat pengendap yang digunakan adalah KOH dan NaOH. Dari segi biaya NaOH lebih murah daripada KOH. Namun KOH lebih ramah linglcungan karena unsur ini diperlukan oleh tanaman.
Metode yang digunakan adalah pengendapan bertingkat_pH larutan dinaikkan tiap satu tahap dan endapan disaring tiap tahap. Sebelum diolah, kandungan logam berat dianalisa menggunakan Spektra Serapan Atom (AAS) di Lab.TEL TGP FTUI_ Pengendapan bertingkat ini akan menghasilkan iiltrat yang masih mengandung logam berat dan endapan yang termasuk limbah B3.
Limbah yang pertama diolah adalah limbah 4KD dan 4KA_ Limbah ini sangat asam (pH=0,22) dan pada pH 4 mencapai eiisiensi 99,92%, sehingga kadar logam filtrat sebesar 1,64 mg/1 (< baku mum = 5 mg/1). Sedangkan limbah 4KA pada pl-I ll menghasilkan filtrat dengan kandungan Cr 0,187 mg/1 dan Co 30,46 mgfl.
Perbandingan dua zat pengendap, KOH dan NaOH menghasilkan efisiensi penyisihan logam berat yang hampir sama, namun NaOH lebih besar efisiensi penyisiharmya.
Pengolahan limbah per kelompok menghasilkan etisiensi penyisihan logam berar Iebih tinggi daripada carnpuran Iimbah_ Pada campuran limbah terdapat kemungkinan logam berat bértemu dengan anion_ Iain 'pada modul lain yang membuat logam larut, misalnya SO42' dan Cl.
Parameter pembuangan limbah yang digunakan adalah baku mum bapedal untuk pengolahan limbah cair B3 untuk industri, karena baku mutu untuk pengolahan limbah laboratorium belum ada. Campuran limbah yang telah ditambahkan NaOH akan menghasilkan kandungan filtrat sebagai berikut:
1. pH 8 kadar logam dalam filtrat: Cr 1,821 mg/1; Co 69,31 mg/1; Ag 0,203 mg/1; Cu 1,496 mg/1; Fe 0,179 mg,/1; AI 0 mg/I dan Zn 13, 88 mg/I.
2. pH 10 kadar logam dalam Eltrat: Cr 2,008 mg/l; Co 22,95 mg/I; Ag 0,0986 mg/I; Cu 0,672 mg/l; Fe 0,212 mg/l; Al 0 mg/I dan Zn 0,9234 mg/1.
Berdasarkan hasil ini, maka terdapat dua al tematif untuk mengolah limbah Lab.DPK. Yang pertama limbah diolah pada pH S, sehingga beberapa Iogam telah memenuhi baku mutu pengolahan limbah, yaitu Cu, Fe, dan Al, sedangkan sisanya diolah dengannrhetode lain. Yang kedua adalah dengan-rhengolah Iimbah pada pH 10 dan memisahkan Co dari campman limbah. Pengolahan pada pH ini berarti harus ada pengolahan tambahan untuk filtrat, karena pH 10 lebih besar daripada pH baku mutu (9). Filtrat harus ditambah dengan asam sehingga berada dalam range yang diperbolehkan atau dicampur dengan limbah asam anorganik dari modul lain agar pl-I berada antara 6-9."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S49301
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Kartikasari
"ABSTRAK
Pengukuran dosis radiasi lingkungan perlu dilakukan untuk memastikan bahwa paparan radiasi yang diterima masyarakat masih di bawah nilai batas dosis yang ditentukan oleh Badan Tenaga Nuklir Nasional (BAPETEN). Salah satu caranya dengan menggunakan Thermoluminescence Dosimeter (TLD) kalsium sulfat CaSO4 yang memanfaatkan sifat luminesensi sebagai detektor radiasi. Kemampuan luminesensi dosimeter dapat ditingkatkan dengan memberikan penambahan dopan. Diantara dopan yang memungkinkan untuk TLD CaSO4 yaitu dysprosium (Dy) dan thulium (Tm). Salah satu metode penambahan dopan adalah dengan metode kopresipitasi. Penambahan Tm sebagai dopan menggunakan metode kopresipitasi dalam sintesis TLD CaSO4 belum pernah dilakukan sebelumnya. Oleh karena itu tujuan dari penelitian ini adalah untuk mengetahui pengaruh penambahan dopan Dy dan Tm dalam sintesis TLD CaSO4 menggunakan metode kopresipitasi serta untuk mengetahui pengaruh penambahan PTFE dalam pembentukan pelet TLD CaSO4:Dy maupun CaSO4:Tm. Berdasarkan hasil penelitian dapat disimpulkan bahwa penambahan dopan Dy maupun Tm dapat meningkatkan sensitivitas CaSO4. TLD hasil sintesis memiliki respon yang linier terhadap dosis radiasi dengan penyinaran menggunakan Sr-90 dan Cs-137. Penambahan PTFE menurunkan intensitas TLD CaSO4:Dy maupun CaSO4:Tm

ABSTRACT
Environmental radiation dosage measurements need to be done to ensure that the radiation exposure received by the community is still below the dose limit value determined by Nuclear Energy Regulatory Agency (BAPETEN). One way is by using Thermoluminescence Dosimeter (TLD) Calcium Sulphate (CaSO4). The increase in luminescence power of the dosimeter can be accomplished by the addition of dopant. Dysprosium Dy and Thulium Tm are effective dopants for TLD CaSO4. One method of adding dopant is by coprecipitation method. The addition of Tm as dopant using coprecipitation method in TLD synthesis never done before. Therefore, the purpose of this research is to know the effect of dopant addition of Dy and Tm in the synthesis of TLD CaSO4 using coprecipitation method and to know the effect of addition of PTFE in formation of TLD pellet CaSO4:Dy and CaSO4:Tm. Based on the results of the study it can be concluded that the addition of Dy or Tm can increase the sensitivity of TLD CaSO4. Synthetic TLD has a linear response to radiation dose by irradiation using Sr-90 and Cs-137. Addition of PTFE decreases luminescence power because the percentage of PTFE given is greater than CaSO4:Dy and CaSO4:Tm"
2017
T48380
UI - Tesis Membership  Universitas Indonesia Library
cover
Vanny Endritasari
"Alumina aktif (Al3O;) merupakan Salah satu jenis desiccnnr yang banyak digunakan unluk mengadsorp uap air pada gas, karena memiliki struktur yang kuat, luas permukaan besar (200-400 mg/g), Lidak mudah terdaklivasi oleh senyawa organik, dan dapat diregenerasi pada temperatur relatif rendah (250-350°C). Pada penelitian ini dilakukan proses Bayer unluk mcnghasilkan alumina aktif dari bauksit Bintan dcngan langkah ulama preparasi bijih bauksit, ekstraksi aluminium hidroksida (Al(0l-l)3), presipitasi aluminium hidroksida, dan kalsinasi aluminium hidroksida agar terbentuk alumina aktif.
Salah satu faktor yang mempcngaruhi kualilas dan kuantitas dari aluminium hidroksida clan alumina aktif adalah temperatur presipitasi. Oleh sebab itu dalam pcnelilian ini dilakukan variasi temperatur presipitasi.
Dari hasil penelitian diketahui bahwa aluminium hidroksida berbcntuk kristal bayer-ire pada tcmperatur presipitasi 27°C (temperatur kamar) dan berbcntuk kristal gibbsite pada temperarur presipiiasi 80°C Diantara kedua temperalur tcrsebul bayerile dan gibbsire yang lerbcntuk memiliki Lingkal kristalinitas yang lebih rendah, dimana semakin rcndah tingkat kristalinitasnya, jumlah aluminium hidroksida yang lerpresipilasi semakin banyak, dan puncaknya tcrdapal pada lempcratur prcsipilasi 60°C, dimana % ckstraksi aluminium hidroksida dari bauksil mencapai 87.03%
Alumina aktif yang memenuhi kritcria sebagai desiccrmr bcrdasarkan luas permukaannya dihasilkan dari kalsinasi lerhadap aluminium hidroksida yang dipresipitasi pada temperatur kamar, 40°C dan 80°C, dimana ketiga alumina aklif tersebut bcnurut-tumt memiliki luas permukaan sebesar 349,3 ml/g, 2502 ml/g dan 234.7 m2/g, dengan % ekstraksi bemirul.-lurut sebesar l6,38%, 36,4% dan 25,9%."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S49288
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wilda Nur Puspita
"ABSTRAK
Pembentukan deposit kerak CaCO3 oleh air sadah pada sistem perpipaan di industri maupun rumah tangga menimbulkan banyak permasalahan teknis dan ekonomis. Pengolahan air sadah dan pencegahan pembentukan kerak umumnya dilakukan secara kimiawi seperti resin penukar ion dan penambahan inhibitor kerak. Namun, metode ini tidak cukup aman karena dapat mengubah sifat kimia larutan serta investasinya yang besar. Agitasi mekanik merupakan metode alternatif secara fisik untuk mengatasi pembentukan kerak (CaCO3). Campuran larutan NaHCO3 dan CaCl2 digunakan untuk menghitung kandungan ion Ca2+ sebagai indikator terbentunya kerak melalui metode titrasi kompleksometri. Hasil penelitian menunjukkan bahwa agitasi mekanik dapat meningkatkan laju presipitasi CaCO3.

ABSTRACT
CaCO3 deposit formation crust by hard water in piping systems in industrial and household raises many technical and economical problems. Treatment and prevention of hard water scale formation is generally carried out chemically, such as ion exchange resins and the addition of scale inhibitors. However, this method is less secure because it can alter the chemical properties of the solution as well as a great investment. Mechanical agitation is an alternative method to cope physically scaling (CaCO3). Mixture solution between NaHCO3 and CaCl2 are used to calculate the content of Ca2+ ions as an indicator of CaCO3 deposit formation through complexometric titration. The results showed that the mechanical agitation can increase the rate of precipitation of CaCO3."
Fakultas Teknik Universitas Indonesia, 2011
S1465
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Luna Sekar Anindya
"Meningkatnya penggunaan LIB telah membuat industri daur ulang LIB menjadi sangat penting mengingat dampak ekonomo dan lingkungan yang signifikan dari limbah baterai end-of-life. Salah satu rute yang memungkinkan untuk mengekstraksi logam adalah dengan rute hidrometalurgi yang dilakukan pada suhu mendekati suhu lingkungan dibandingkan dengan suhu tinggi pada dalam pirometalurgi. Hidrometalurgi melibatkan pelarutan bijih dalam reagen diikuti dengan pengendapan selektif dan pemurnian. Makalah ini secara khusus berfokus pada asesmen Area 300 yang melibatkan pengendapan Cu, Al, Fe Hidroksida dan Mn, Ni, Co hidroksida. Proses dimulai dengan mengambil umpan dari daerah leaching (Area 200) dan masuk ke dalam reaktor presipitasi untuk mengendapkan Cu, Al, dan Fe. Endapan Cu, Al, dan Fe kemudian disaring dan dikeringkan. Sedangkan sisa logam Mn, Ni, dan Co akan mengalami reaksi pengendapan di reaktor dua; dan kemudian disaaring dan dikeringkan menghasilkan bubuk hidroksida NMC. Larutan logam yang tersisa (Li2CO3) akan dikirim ke Area 400. Neraca massa dan energy dihitung dengan menerapkan asumsi untuk setiap unit operasi utama. Asumsi utama dinyatakan dalam poin berikut: pemulihan sempurna logam yang diinginkan dan menggunakan rasio stoikiometri untuk menemukan NaOH yang diperlukan; efisiensi pemisahan 99,5%; 95% efisiensi pencucian pada filter; penguapan sempurna H2O dalam proses pengeringan. Pemilihan dan pengukuran unit operasi utama juga telah dilakukan; STR, plate dan frame filter press serta rotary dryer menjadi pilihan terakhir. Estimasi biaya modal dilakukan berdasarkan estimasi biaya metode factorial, seta dilakukan juga estimasi konsumsi energy dan emisi lingkungan. Dikarenakan banyak asumsi yang diterapkan untuk menyederhanakan hitungan, makalah ini menyarankan pekerjaan lebih lanjut dilaksanakan untuk meningkatkan proses pada skala yang lebih besar, termasuk membuat sistem kontrol dan feasibility study.

The increasing usage of LIBs has made the LIBs recycling industry critically important considering the significant economic and environmental impact of the EOL battery waste. One of the possible routes to extract the metals is by hydrometallurgical route which is carried out at near ambient temperature in comparison to high temperature in pyrometallurgical. Hydrometallurgical involves the dissolving of ore in a reagent followed by selective precipitation and purification. This paper specifically focuses on the preliminary assessment of Area 300 which involves the precipitation of Cu, Al, Fe hydroxides and Mn, Ni, Co hydroxides. The process starts by taking the feed from the leaching area (Area 200) and coming into the precipitation reactor to precipitate Cu Al and Fe. Cu, Al, and Fe precipitates will then be filtered out and dried. Meanwhile the remaining Mn, Ni, and Co metals will undergo a precipitation reaction in reactor two; and are then filtered out and dried producing powdered NMC hydroxides. The remaining metal solution (e.g., Li2CO3) will be sent to Area 400. Mass and energy balance are calculated by applying assumptions for each critical unit operation. Major assumptions are stated in the following points:  complete recovery of metal of interest and using the stoichiometric ratio to find the required NaOH; 99.5% separation efficiency; 95% washing efficiency; complete evaporation of H2O in drying process. Major unit operation selection and sizing were conducted; STR, a plate and frame filter press along with rotary type dryer were the final selection. An estimation of fixed capital cost were carried out based on the factorial method of cost estimation, as well as the estimated consumables and energy consumption. Environmental emissions were quantified. As numerous assumptions were used to simplify the balance calculations and sizing, the report suggests further work be done to enhance the process developed on a larger scale. This may include creating a control system and conducting a feasibility study."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdi Suryadi
"Hidroksiapatit (HA) merupakan salah satu material bone graft alloplast yang sering digunakan dalam prosedur bone grafting karena sifat osteokonduktif dan biokompatibel yang baik serta komposisinya yang mirip dengan komponen anorganik tulang dan gigi. Namun, HA yang diproduksi dengan metode sintering sulit teresorpsi di dalam tubuh karena kristalinitas yang tinggi. HA dengan kristalinitas rendah dapat diproduksi dengan metode disolusi presipitasi. Pembuatan HA dalam bentuk blok membutuhkan waktu lebih lama dibandingkan granul, penambahan kondisi hidrotermal dapat mempercepat waktu konversi. Penelitian ini bertujuan untuk menganalisis kekuatan tekan HA yang dihasilkan dari blok gipsum yang direndam dalam larutan Na3PO4 1 mol/L pada kondisi hidrotermal selama 48 jam pada suhu 100oC dan 140oC dan 180oC dan. Blok gipsum dibuat dengan mencampurkan bubuk kalsium sulfat hemihidrat dan aquades dengan rasio akuades dibanding bubuk 0,5. Blok gipsum direndam di dalam larutan Na3PO4 1 mol/L dan dipanaskan selama 48 jam pada suhu 100oC, 140oC dan 180oC. Uji compressive strength dilakukan untuk evaluasi kuat tekan dengan menggunakan Universal Testing Machine AGS-X (Shimadzu, Japan). Setelah perendaman, HA teridentifikasi pada semua kelompok spesimen, namun pada kelompok 100oC dan 140oC selain HA, fasa gipsum juga masih teridentifikasi. Pada kelompok 180oC hanya HA yang teridentifikasi. Berdasarkan uji statistik One-Way ANOVA dan Post-Hoc Tamhane, terdapat penurunan nilai kuat tekan yang signifikan antara kelompok kontrol (gipsum) dan setelah perlakuan suhu 100oC, 140oC dan 180oC. Penurunan nilai kuat tekan juga signifikan antara kelompok perlakuan suhu 180oC dengan kelompok perlakuan suhu 100oC dan 140oC. Namun, tidak ada perbedaan bermakna nilai kuat tekan antara kelompok perlakuan suhu 100oC dan 140oC. Disimpulkan bahwa penelitian ini menunjukkan nilai kekuatan tekan yang turun secara signifikan dibandingkan dengan kelompok kontrol (gipsum).

Hydroxyapatite (HA) is one of the alloplastic materials that is often used in bone grafting procedures because of its osteoconductive and biocompatible properties and its composition which is similar to the inorganic components of bones and teeth. However, sintered HA cannot be reabsorbed in the body due to its high crystallinity. Low crystalline HA can be fabricated through dissolution-precipitation reaction. HA block require conversion time that HA granules. Applying hydrothermal condition to dissolution-precipitation reaction would compensate for longer conversion time. The aim of this study was to analyze the compressive strength of HA block produced from gypsum block that immersion in Na3PO4 1 mol/L solution based on dissolution precipitation method under hydrothermal condition. Block gypsum were made from calcium sulfate hemihydrate powder mixed with distilled water at water to powder ratio 0,5. The gypsum blocks were immersed in Na3PO4 1 mol/L solution for 48 hours at 100oC, 140oC and 180oC. Compressive strength test was used for mechanical strength evaluation and was done with Universal Testing Machine AGS-X (Shimadzu, Japan). After immersion, there was a HA phase identified in all groups, however, groups that had immersion at 100oC and 140oC there was gypsum identified too. Based on statistical analysis using One Way ANOVA and Post-Hoc Tamhane test, there was a significant decrease in compressive strength value between groups of specimens before and after immersion at 100oC, 140oC and 180oC. Compressive strength value was Also significant between group immersion at 180oC and 100oC, 140oC. But the difference between the group after immersion at 100oC and 140oC was not significant. It was concluded that the compressive strength value decreased significantly compared to the control group (gypsum)."
Depok: Fakultas Kedokteran Gigi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Doyahudin
"Proses pembuatan hidroxiapatite dengan menggunakan metode presipitasi dalam larutan SBF (Synthetic Body Fluid) dan dipengaruhi oleh medan listrik luar telah dilakukan. Proses presipitasi dilakukan pada kondisi suhu 37o dan pH 7,4. Dibandingkan dengan tanpa medan listrik massa presipitan dalam bentuk kristal apatite meningkat dengan kehadiran medan listrik. Peningkatan maksimum dari 17,5 % menjadi 39,1 % terjadi pada kuat medan listrik 16 V/cm. Disamping itu medan listrik 16 V/cm dapat memperbesar ukuran bulir dari 39 nm menjadi 47 nm.

Precipitation method has been used to prepare hydroxyapatite within SBF (Synthetic Body Fluid) solution at 37oC and pH of 7.4 and under influence by electrical field. Compared with no electrical field, the mass of precipitation in the form of Apatite Crystal increased with electrical field. The maximum increase of 17,4 % became 39,1 % at an electrical field of 16 V/cm. Besides that an electric field of 16 V/cm could increase crystallite size from 39 nm became 47 nm."
Depok: Universitas Indonesia, 2008
S28992
UI - Skripsi Open  Universitas Indonesia Library
cover
Irena Wijatmo
"Latar Belakang: Karbonat apatit (C-Ap) digunakan sebagai material pengganti tulang karena memiliki sifat osteokonduktif dan dapat memicu pertumbuhan tulang baru. Blok C-Ap dibuat menggunakan prekursor kalsium sulfat dihidrat dengan metode disolusi presipitasi pada suhu 100oC. Kalsium sulfat dihidrat digunakan sebagai prekusor karena memiliki ion Ca2+. Larutan Na2CO3 dan Na3PO4 digunakan untuk mendapatkan ion CO32- dan PO43-. Tujuan: Penelitian ini bertujuan membuat blok C-Ap dengan perbedaan molaritas dan lama waktu perendaman dan mengkarakterisasi C-Ap yang dihasilkan. Metode: Sebanyak 48 spesimen dibuat dari prekursor kalsium sulfat hemihidrat yang dicampur akuades dengan perbandingan air : bubuk = 1 : 2. Spesimen kalsium sulfat dihidrat kemudian dilakukan proses disolusi presipitasi dengan direndam dalam larutan Na2CO3 dan Na3PO4 dengan molaritas 0,5 mol/L dan 1 mol/L, selama 48 jam dan 72 jam pada suhu 100oC. Terbentuknya senyawa C-Ap diuji dengan ATR-FTIR (Thermo Fisher Scientific, Waltham, Massachussets, USA). Pengujian absorpsi dilakukan dengan merendam spesimen dalam larutan saline dalam suhu 37oC selama 24 jam, kemudian diukur beratnya sebelum dan sesudah perendaman dengan Analytic balance (Shimadzu AX 200, Shimadzu Corp, Kyoto, Japan). Hasil: Karakterisasi FTIR menunjukkan C-Ap dapat terbentuk dengan molaritas larutan Na2CO3 dan Na3PO4 1 mol/L selama 48 dan 72 jam, sedangkan pada molaritas larutan Na2CO3 dan Na3PO4 0,5 mol/L selama 48 dan 72 jam masih terdapat senyawa SO42-. Hasil uji water sorption pada spesimen disolusi presipitasi dengan 0,5 mol/L 48 jam; 0,5 mol/L 72 jam dan 1 mol/L selama 48 jam; 1 mol/L 72 jam secara berturut-turut adalah 22,45%±2,49, 15,83%±2,46, 14,21%±3,10, dan 12,87%±2,49. Kesimpulan: Blok C-Ap dapat terbentuk dengan prekursor kalsium sulfat dihidrat dengan metode disolusi presipitasi dalam larutan 1 mol/L Na2CO3 dan 1 mol/L Na3PO4 selama 48 dan 72 jam.


Background: Carbonate apatite (C-Ap) is used as bone material because it has osteoconductive properties and able to trigger new bone growth. The C-Ap block was made using calcium sulfate dihydrate precursor with precipitation dissolution method at 100oC. Calcium sulfate dihydrate is used as a precursor because it has Ca2+ ions. Na2CO3 and Na3PO4 solutions were used to obtain CO32- and PO43- ions. Objective: This study aims to fabricate C-Ap block with differences in molarity and immersion time and characterizes the C-Ap produced. Method: A total of 48 specimens were prepared from calcium sulfate hemihydrate precursor mixed with distilled water with a ratio of water: powder = 1: 2. Calcium sulphate dihydrate specimens were then immersed in a solution of Na2CO3 and Na3PO4 with a molarity of 0.5 mol/L and 1 mol/L, for 48 hours and 72 hours at 100oC. C-Ap then was tested with ATR-FTIR (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Absorption test was done by immersing the specimen in saline solution at 37oC for 24 hours, and the weight measured before and after immersion with Analytic balance (Shimadzu AX 200, Shimadzu Corp, Kyoto, Japan). Results: FTIR characterization showed that C-Ap could be formed with molarity of 1 mol/L Na2CO3 and Na3PO4 solution for 48 and 72 hours, while in molarity of Na2CO3 and Na3PO4 0.5 mol/L solution for 48 and 72 hours there were still SO42- compounds. The water sorption test resulted on the precipitation dissolution specimens with 0.5 mol/L 48 hours, 0.5 mol/L 72 hours and 1 mol/L for 48 hours, 1 mol/L 72 hours were 22.45%±2.49, 15.83%±2.46, 14.21%±3.10, and 12.87%±2.49. Conclusion: Carbonate Apatite block can be formed with calcium sulfate dihydrate precursors by precipitation dissolution method in a solution of 1 mol/L Na2CO3 and Na3PO4 for 48 and 72 hours."
Depok: Fakultas Kedokteran Gigi Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>