Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18 dokumen yang sesuai dengan query
cover
Novie Ardhyarini
Abstrak :
Produk yang terpenting dalam industri minyak mentah adalah gasolin (C5-C10). Usaha mengkonversi minyak mentah menjadi gasolin dapat diiakukan dengan berbagai cara, saiah satu metode yang sering dipakai adaiah metode perengkahan^ Proses perengkahan katalitik diiakukan dengan cara memanaskan umpan pada suhu tinggi sehingga hidrokarbon dengan molekul-molekul yang besar direngkah menjadi molekul-moiekul yang lebih kecil dan pada waktu yang bersamaan dengan bantuan suatu katalis terjadi reaksi antar molekul yang bersifat aktif membentuk molekul-molekul baru. Penelitian ini bertujuan untuk mengetahui aktivitas katalis zeolit LZY- 84 yang diimpregnasi dengan logam (La dan Ce) terhadap perengkahan hidrokarbon pada beberapa kondisi operasi temperatur (450, 480, 510°C ). Anaiisa zeolit diiakukan dengan menggunakan uji keasaman katalis menggunakan metode titrasi asam-basa, FT-IR terhadap zeolit sebelum dan setelah digunakan (akibat bertambahnya komposisi katalis dengan kehadiran karbon), luas permukaan (BET) dan difraksi sinar X (XRD). Uji aktivitas menggunakan gas oil mendapat hasil peningkatan produk berupa gasolin untuk setiap jenis katalis yang digunakan LZY
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wiwik Yuliani
Abstrak :
Scaleup atau perbesaran skala produksi dari skala lab menjadi skala industri merupakan bagian pekerjaan yang harus dilakukan untuk menerapkan hasil percobaan di laboratorium. Faktor penting dalam perubahan skala Untuk perbesaran skala sampai dengan 200.000 kali, diameter reaktor masingmasing 1,81 meter untuk tinggi reaktor sama dengan diameter dan 1,44 meter untuk reaktor dengan tinggi sama dengan dua kali diameter. Dimensi pengadukan masing-masing sebesar 0,60 dan 0,95 meter dengan putaran 0,15 dan 0,24 rpm. Rasio luas permukaan terhadap volume akan mengalami penurunan seiring dengan perbesaran dari reaktor. Untuk perbesaran skala produksi 10.000 kali mengalami penurunan hingga tinggal 7-9% dari harga sebelumnya, sedangkan untuk skala produksi 200.000 kali mengalami penurunan hingga tinggal 3% dari harga sebelumnya. Reaktor adalah kondisi hidrodinamika yang harus sama pada setiap perubahan volume operasi. Parameter bilangan hidrodinamika pada penelitian ini digunakan bilangan Reynold sebagai acuan perhitungan scaleup. RBDPO (Refined Bleached Deodorized Palm Oil) digunakan sebagai umpan dalam percobaan. Reaktor jenis batch digunakan untuk reaksi perengkahan katalitik yang merupakan reaksi pemotongan rantai ikatan karbon dan hidrogen menjadi rantai yang lebih pendek. Produk hasil perengkahan antara lain dihasilkan biobensin. Katalis zeolit alam digunakan sebagai katalisator perengkahan. Reaksi dilakukan pada fasa cair dengan kondisi reaksi isothermal pada temperatur 320 ºC dan waktu reaksi bervariasi 60, 90 dan 120 menit. Kenaikan temperatur dan waktu reaksi perengkahan akan menurunkan densitas biobensin. Densitas biobensin didapatkan sebesar 0,82 g/ml pada rentang temperatur distilasi 200-280 ºC. Konversi perengkahan katalitik pada T=320 ºC dan waktu reaksi 60, 90, 120 menit didapatkan masing-masing sebesar 24,86%, 30,26% dan 33,17%. Berdasarkan konversi yang diperoleh dari percobaan, dihitung dimensi reaktor dan dilakukan perbesaran dimensi skala reaktor berdasarkan rasio scaleup yang ditentukan. Perbesaran skala reaktor dilakukan pada 10.000 dan 200.000 kali dari produk hasil reaksi laboratorium. Dari perhitungan didapatkan dimensi reaktor perbesaran skala 10.000, diameter reaktor didapatkan 0,667 meter apabila tinggi reaktor sama dengan diameter dan didapatkan 0,530 meter apabila tinggi reaktor sama dengan dua kali diameter. Dimensi pengadukan masing-masing sebesar 0,22 meter dan 0,35 meter dengan putaran 1,12 dan 1,78 rpm.Untuk perbesaran skala sampai dengan 200.000 kali, diameter reaktor masing-masing 1,81 meter untuk tinggi reaktor sama dengan diameter dan 1,44 meter untuk reaktor dengan tinggi sama dengan dua kali diameter. Dimensi pengadukan masing-masing sebesar 0,60 dan 0,95 meter dengan putaran 0,15 dan 0,24 rpm. Rasio luas permukaan terhadap volume akan mengalami penurunan seiring dengan perbesaran dari reaktor. Untuk perbesaran skala produksi 10.000 kali mengalami penurunan hingga tinggal 7-9% dari harga sebelumnya, sedangkan untuk skala produksi 200.000 kali mengalami penurunan hingga tinggal 3% dari harga sebelumnya.
Depok: Fakultas Teknik Universitas Indonesia, 2007
T23300
UI - Tesis Membership  Universitas Indonesia Library
cover
Tunas Alam
Abstrak :
ABSTRAK
Telah dilakukan studi sintesis dan karakteristik zeolit HY dengan pori hirarki menggunakan metode template dan non template sebagai katalis untuk reaksi perengkahan n-heksadekana. Hasil karakterisasi XRD menunjukkan zeolit NaY hirarki dengan metode template dan non template memiliki puncak khas pada 2 teta 6?, 10? dan 11? yang merupakan puncak karakteristik untuk zeolit NaY, walaupun untuk NaY hirarki dengan template memiliki sedikit pengotor yaitu zeolit NaP. Adsorpsi dengan nitrogen menunjukkan bahwa NaY hirarki dengan template dan non template memilki hysterical loop pada P/Po 0,7 ndash; 0,9 yang mengindikasikan adanya pori hirarki pada kedua zeolit tersebut dan hasil pengukuran BET menghasilkan luas permukaan 393,496 m2/g dan 528,82 m2/g untuk NaY hirarki dengan template dan NaY hirarki tanpa template secara berturut-turut. Zeolit NaY hirarki kemudian dimodifikasi dengan metode tukar kation sehingga menghasilkan HY berpori hirarki dan hasil karakterisasi dengan IR-DRS menunjukkan adanya penambahan keasaman pada kedua zeolit HY berpori hirarki. Uji keasaman dengan adsorpsi menggunakan ammonia yang menunjukkan adanya puncak pada bilangan gelombang 1458 cm-1 dan 1443 cm-1 untuk HY hirarki template dan HY hirarki non template dimana bilangan gelombang tersebut merupakan vibrasi NH3 bebas yang teradsorpsi. Zeolit HY berpori hirarki kemudian digunakan sebagai katalis reaksi perengkahan katalitik menggunakan n-heksadekana sebagai senyawa model dan hasil reaksi perengkahan menunjukkan zeolit HY berpori hirarki memiliki selektivitas yang tinggi untuk menghasilkan fraksi gasolin dengan selektivitas sebesar 30 dan 23 dibandingkan dengan zeolit HY mikropori yang memiliki selektivitas sebesar 25 .
ABSTRACT
The synthesis and characteristic of HY zeolit with pore hierarchy using template and non template method had been done as cracking catalyst on n hexadecane. The XRD pattern showed both the hierarchical NaY zeolit with the template and non template methods had a characteristic peak at 2 teta 6 , 10 and 11 which are the characteristic peaks for NaY zeolits although for the hierarchical NaY the template has slightly impurities NaP zeolit. Adsorption with nitrogen showed that the hierarchical NaY with templates and non templates exhibited hysterical loop on P Po 0.7 0.9 which indicated a hierarchical pore on both zeolits and BET measurements results for NaY hierarchy with template and NaY hierarchy non template has surface area 393.496 m2 g and 528.82 m2 g for NaY hierarchy with template and NaY hierarchy non template, respectively. Zeolit NaY hierarchy was then modified by cation exchange method to form hierarchical HY and characterization results with IR DRS showed the addition of acidity in both zeolit after adsorption using ammonia, which are indicated peak at 1458 cm 1 and 1443 cm 1 for hierarchical HY with template and a non template which the wave numbers for NH3 vibrations. Hierarchical HY zeolits were then used as a catalytic cracking reaction catalyst using n hexadecane as a model compound and the cracking reaction result shows a porous HY porous zeolit having high selectivity to produce a gasolin fraction with selectivity of 30 and 23 compared to a micropore HY zeolit that having selectivity by 25 .
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48261
UI - Tesis Membership  Universitas Indonesia Library
cover
Zahra Zahirabudi Darayani
Abstrak :
Bio-hidrokarbon dapat dihasilkan dari konversi asam lemak minyak nabati non-pangan melalui reaksi perengkahan katalitik. Pada penelitian ini dilakukan perengkahan minyak jarak kepyar untuk menghasilkan bio-hidrokarbon dengan bantuan katalis zeolite. Katalis zeolite didapatkan dari preparasi fly-ash dengan metode pencucian asam (HCl) dan peleburan alkali (NaOH), yang kemudian diimpregnasi dengan atom boron (B) dan fosfor (P) untuk memodifikasi keasamannya. Untuk mendapatkan konversi minyak jarak kepyar setinggi mungkin, maka dilakukan variasi suhu reaksi (450, 500, dan 550°C) serta variasi katalis. Hasil reaksi perengkahan berupa bio-oil akan dikarakterisasi dengan GC-MS dan FTIR; sedangkan hasil preparasi katalis dikarakterisasi dengan XRD dan XRF. Berdasarkan hasil penelitian, minyak jarak kepyar berhasil dikonversi menjadi senyawa bio-hidrokarbon. Konversi terbesar dihasilkan oleh variasi katalis zeolite fly-ash terimpregnasi 5%wt boron (5%B/FA) pada suhu 550°C sebesar 72.86% dan variasi rasio massa katalis terhadap minyak umpan 10%wt pada suhu 550°C sebesar 81.55%. Berdasarkan hasil GC-MS, katalis campuran boron dan fosfor dengan rasio massa 10% terhadap minyak umpan (10%wt B/P/FA) memiliki selektivitas terhadap senyawa alkana dan alkena yang terbesar, masing-masing sebesar 24.77% dan 21.07%. Sedangkan jika ditinjau berdasarkan sifat fisiknya, karakteristik dari bio-hidrokarbon hasil variasi katalis zeolite fly-ash terimpregnasi 1%wt fosfor (1%P/FA) pada suhu 550°C bersifat mendekati standar biodiesel dengan nilai densitas, viskositas kinematik, dan angka RON masing-masing sebesar 796 kg/m3, 2.72 cSt dan 87. ......Bio-hydrocarbons can be produced through the catalytic cracking of non-edible vegetable oil fatty acids. In this study, the cracking of castor oil was conducted to produce bio-hydrocarbons using zeolite catalyst. The zeolite catalyst was obtained from fly ash through acid (HCl) leaching and alkali (NaOH) fusion methods, followed by impregnation with boron (B) and phosphorus (P) atoms to modify its acidity. To achieve the highest possible conversion of castor oil, reaction temperature variations (450, 500, and 550°C) and catalyst variations were performed. The resulting cracking products, in the form of bio-oil, were characterized using GC-MS and FTIR, while the prepared catalysts were characterized using XRD and XRF. Based on the research result, castor oil was successfully converted into bio-hydrocarbon compounds. The highest conversion was achieved with the 5%wt boron-impregnated fly ash zeolite catalyst (5%B/FA) at 550°C by 72.86%, also the variation of a catalyst-to-feedstock mass ratio of 10%wt at 550°C, resulting in 81.55% conversion. According to the GC-MS analysis, the catalyst with a 10%wt boron and phosphorus mixture (10%wt B/P/FA) exhibited the highest selectivity towards alkane and alkene compounds, at 24.77% and 21.07% respectively. When considering the physical properties, the bio-hydrocarbon produced using a 1%wt phosphorus-impregnated fly ash catalyst (1%P/FA) at 550°C exhibited characteristics close to biodiesel standards, with density, kinematic viscosity, and research octane number values of 796 kg/m³, 2.72 cSt, and 87 respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jelita Helianisa
Abstrak :
Tempurung kelapa merupakan biomassa hasil samping pengolahan buah kelapa yang pemanfaatannya belum optimal karena dianggap sebagai limbah tak bernilai. Dalam proses pengembangannya, limbah tempurung kelapa memiliki peluang yang besar untuk dimanfaatkan sebagai produk dengan nilai ekonomi tinggi seperti BTX (Benzena, Toluena, Xilena) karena memiliki building block berupa senyawa aromatik. Proses pirolisis termal dan perengkahan katalitik biomassa tempurung kelapa telah dilakukan dalam reaktor unggun diam untuk menghasilkan senyawa BTX masing – masing pada suhu 550oC dan 500oC. Katalis CaO/HZSM-5 yang disintesis melalui teknik pencampuran fisik dan impregnasi basah dengan perbandingan 2:1 terhadap umpan bio-oil digunakan pada proses upgrading perengkahan katalitik. Katalis CaO/HZSM-5 dipilih karena penggunaan kedua katalis tersebut secara simultan memberikan efek sinergis dalam menghasilkan senyawa monoaromatik BTX. Penambahan CaO terbukti mampu meningkatkan ukuran pori rata – rata katalis setelah termodifikasi sehingga dapat menurunkan kemungkinan deaktivasi katalis dengan mencegah pembentukan kokas. Karakterisasi BET terhadap katalis menunjukkan bahwa diameter pori katalis CaO/HZSM-5 pencampuran fisik dan impregnasi basah secara berturut – turut sebesar 2,14 nm dan 5,24 nm. Selanjutnya, bio-oil melalui karakterisasi FTIR dimana produk upgrading bio-oil tempurung kelapa didominasi oleh senyawa aromatic, phenol, dan alcohol. Berdasarkan karakterisasi GC-MS, katalis CaO/HZSM-5 hasil pencampuran fisik memberikan kinerja optimal dimana yield BTX tertinggi yang diperoleh sebesar 45,85%. Penelitian ini diharapkan dapat memberikan solusi alternatif dalam mengurangi ketergantungan pada bahan bakar fosil......Coconut shell is a by-product of processing coconuts whose utilization is not optimal because it is considered as worthless waste. In the development process, coconut shell waste has an excellent opportunity for being utilized as a product with high economic value as BTX (Benzene, Toluene, Xylene) due to its high content of lignin which is the building block in the form of aromatic compounds. Thermal pyrolysis and catalytic cracking of coconut shell biomass have been carried out in a fixed bed reactor to produce BTX compounds at 550oC and 500oC, respectively. CaO/HZSM-5 catalyst was synthesized using physical mixing and wet impregnation technique with a ratio of 2:1 to bio-oil feed in the upgrading process of catalytic cracking. CaO/HZSM-5 catalyst was chosen because the use of the two catalysts simultaneously provides a synergistic effect in producing BTX compounds. The addition of CaO has proven to increase the average pore size of the catalyst after modification and reduce the possibility of catalyst deactivation by preventing coke formation. The BET characterization of the catalyst showed that the pore diameters of the CaO/HZSM-5 catalyst of physical mixing and wet impregnation were 2,14 nm and 5,24 nm, respectively. Furthermore, FTIR characterization showed the upgrading product of coconut shell bio-oil dominated by aromatic compounds, phenols, and alcohols. Based on the GC-MS characterization, the CaO/HZSM-5 catalyst of physical mixing gave an optimal performance where the highest BTX yield was obtained at 45.85%. This research was expected to provide alternative solutions to reduce dependency on fossil fuels.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafael Pascalis Tanudio
Abstrak :
Proses perengkahan katalitik termal merupakan salah satu proses untuk mengolah minyak hewani menjadi bahan bakar bio. Pada penelitian ini bahan bakar bio jenis renewable diesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO. Proses sintesis renewable diesel dilakukan menggunakan reaktor autoclave berpengaduk diberikan perlakuan yang berbeda tiap prosesnya dengan perbedaan suhu (375℃ dan 400℃) untuk sampel dan jumlah katalis yang digunakan sebanyak 3 wt% dan 5 wt% dari umpan yang digunakan yaitu lemak sapi sehingga didapatkan 4 sampel renewable diesel (RD-1 hingga RD-4) dengan harapan mendapatkan yield dan konversi, sehingga dapat ditentukan kondisi operasi yang optimal untuk sintesis renewable diesel. Setelah berhasil disintesis produk cair organik didistilasi untuk mendapatkan fraksi renewable diesel dan dikarakterisasi berdasarkan Standar Nasional Indonesia (SNI) untuk melihat nilai viskositas, bilangan asam, densitas, titik beku, dan bilangan iodin, serta menggunakan GC-MS untuk mengidentifikasi fraksi komponen dan FTIR untuk mengidentifikasi gugus fungsi dari hasil sintesis. Renewable diesel akan dibandingkan antar sampel untuk memperoleh karakteristik terbaik yang akan dibandingkan dengan bahan bakar solar. Dari hasil pengujian diperoleh spesifikasi renewable diesel seperti densitas, viskositas, bilangan iodin, bilangan asam, dan titik beku sudah memenuhi standar SNI, namun untuk spesifikasi bilangan asam pada sampel RD-1 dan RD-3 belum memenuhi SNI. Nilai yield dan selektivitas tertinggi diperoleh pada sampel RD-4 dengan suhu 400℃ dan katalis CaO sebanyak 5% wt, diperoleh selektivitas sebesar 91,83% dan yield sebesar 44,3% dengan sisa oksigenat sebesar 16,99%......Catalytic thermal cracking process is one of the processes to convert animal fats into biofuel. In this study, renewable diesel is synthesized from animal fats or more specifically beef tallow in a reactor with the help of CaO catalyst. Renewable diesel synthesis process is carried out using a stirred autoclave reactor with different treatment for each process with differences in temperature (375℃ and 400℃) and the amount of catalyst used is 3% by feed weight and 5% by feed weight of beef tallow, hence 4 (four) renewable diesel samples denominated by RD-1, RD-2, RD-3, and RD-4, to obtain different results of yield and conversion so that the optimal condition for renewable diesel synthesis is obtained. Renewable diesel was characterized based on the Standar Nasional Indonesia (SNI) to see the value of viscosity, acid number, density, freezing point, and iodine number. GC-MS and FT-IR analytics is also used to identify fraction component of sample and to identify functional groups of the product. Renewable diesel will be compared between samples to obtain the best characteristics that will be compared with conventional diesel fuel. The research resulting in the specifications of renewable diesel such as density, viscosity, acid number, freezing point and iodine number which meet the SNI standard, but the acid number specifications for RD-1 and RD-3 samples do not meet SNI standard. The highest yield and selectivity values were obtained in the sample RD-4 with a temperature of 400℃ and a CaO catalyst of 5% wt, obtained selectivity of 91,83% and yield of 44,3% with a residual oxygenate of 16,99%.
Depok : Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Diyanto
Abstrak :
Dalam penelitian ini dilakukan sintesa fraksi hidrokarbon C3 dan C4 dari minyak jarak yang memiliki kandungan asam lemak tak jenuh yang lebih banyak dari CPO. Kandungan asam lemak tak jenuh yang memiliki ikatan rangkap ini memudahkan pemutusan ikatan lebih banyak oleh katalis, menghasilkan yield C3 dan C4 yang lebih banyak. Untuk menghasilkan fraksi C3 dan C4 dari minyak jarak digunakan metode perengkahan katalitik menggunakan katalis ZSM-5. Reaksi dilakukan secara tumpak pada fasa cair dan tekanan atmosferik selama 60 menit. Pada reaksi divariasikan suhu reaksi (320°C; 330°C;340°C) dan rasio massa katalis/SJO (1:75 dan 1:100). Produk gas dianalisis dengan GC sedangkan produk cair menggunakan FTIR Berdasarkan hasil penelitian, pada reaksi dengan suhu 340°C dan rasio katalis/SJO = 1:100 didapatkan hasil maksimum yaitu yield hidrokarbon C4 mencapai 12 %. Produk gas yang diperoleh kebanyakan berupa produk i-C4 dan n-C4 . Sedangkan produk C3 tidak diperoleh secara konsisten.
In this research, synthesis of hydrocarbon fraction C3 and C4 will be held using Jatropha Oil which has more unsaturated fatty acid compared to Crude Palm Oil. This content of unsaturated fatty acid will make it easier for the catalyst to cut the bond, producing more product of C3 and C4. To produce C3 and C4, catalytic cracking method is used with ZSM-5 catalyst. Reaction is performed in batch reactore in liquid phase with atmospheric pressure within 60 minutes. The temperature will be varied within 320°C; 330°C;340°C and the ratio of catalyst/SJO mass of 1:75 and 1:100. The gas product will be analyzed with GC and the liquid product with FTIR. According to the research, the maximum yield is obtained in the 340°C temperature and of catalyst/SJO mass of 1:100, with the result of 12%. The gas product mainly consist of i-C4 and n-C4. Whild the C3 product is not obtained consistently.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52230
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Hidayat
Abstrak :
Akhir-akhir ini problem kelangkaan bahan bakar fosil menjadi sorotan utama dunia. Salah satunya ditunjukkan dengan kenaikan harga minyak bumi dan kelangkaan bahan bakar di mana-mana, salah satu nya adalah Liquefied Petroleum Gas (LPG) yang berasal dari hidrokarbon fraksi C3 dan C4. LPG saat ini digunakan sebagai bahan bakar rumah tangga. Disamping itu, fraksi hidrokarbon C3 dan C4 dalam struktur olefin juga berfungsi sebagai bahan baku petrokimia, yang memegang peranan penting dalam kehidupan sehari-hari. Cadangan minyak bumi yang terus berkurang menuntut ditemukannya sumber energi alternatif. Telah dipublikasikan sebelumnya bahwa minyak kelapa sawit dapat direngkah menjadi senyawa bio-bensin dengan hasil samping hidrokarbon C3 dan C4 sebesar 6%. Penelitian ini bertujuan untuk memperoleh senyawa hidrokarbon C3 dan C4 dari minyak kelapa sawit melalui reaksi perengkahan katalitik pada fasa cair dan tekanan atmosferik selama 1.5 jam. Minyak kelapa sawit direngkah menggunakan katalis asam alumina (Al2O3). Reaksi dilakukan pada variasi suhu reaksi 350°C, 360°C dan 370°C dengan kondenser full reflux agar produk cair dapat mengembun kembali dan menjalani perengkahan lanjutan. Pada suhu reaksi optimum, dilakukan variasi rasio katalis/CPO 1:75, 1:100 dan 1:125. Analisis produk gas dilakukan dengan Gas Chromatography. Disamping itu, untuk mengetahui telah terjadinya reaksi perengkahan katalitik, pada produk cair hasil reaksi dilakukan distilasi, pengujian densitas dan analisis FTIR. Produk gas yang dihasilkan dalam penelitian ini adalah CO2, C2H4, C2H2, dan fraksi hidrokarbon C3 ? C4 (C3H6, C3H8, dan n-C4H10). Hasil penelitian menunjukkan bahwa kondisi optimum reaksi untuk memperoleh produk C3 dan C4 dilakukan pada suhu 370°C dengan rasio massa katalis/CPO = 1:125. Pada kondisi tersebut diperoleh fraksi C3 sebesar 2.12% dan fraksi C4 sebesar 11.53%. Konversi yang dihasilkan adalah 50.09%. Perbedaan densitas produk cair terhadap densitas CPO menunjukkan bahwa telah terjadi reaksi perengkahan katalitik pada CPO, yang menghasilkan densitas distilat sebesar 0.73 g/ml, IBP dicapai pada suhu 350°C. Berdasarkan analisis FTIR, perengkahan CPO dibuktikan dengan berkurangnya gugus ester, berkurangnya ikatan ?(CH2)n?, dan meningkatnya alkil (?CH3) pada produk cair dibandingkan dengan CPO.
Nowadays, the rare of fossil fuel has become the world?s concern. One of them is showed by increasing price of crude oil and limited fuel supply in some regions. One of them is Liquefied Petroleum Gas (LPG) which contains hidrocarbon fractions of C3 and C4. LPG is widely used in household needs.. Besides, hidrocarbon fractions of C3 and C4 in olefin chemical groups also used in petrochemical feedstocks. The decreasing of oil reserves make people strive for discovering any alternative energy sources. It has been published that crude palm oil can be cracked to be biogasoline compound with C3 and C4 as by product for about 6% in amount. This research aims to synthesize hidrocarbon fractions of C3 and C4 from crude palm oil through catalytic cracking in liquid phase and atmospheric pressure for 1.5 hours. Crude palm oil is cracked using acid alumina (Al2O3) catalyst. The reactions done in three temperatures variables, those are 350°C, 360°C dan 370°C with full reflux condenser. The condenser is used for cracking the condensed liquid product which is not converted to gas. In optimum reaction?s temperature, the reactions are varied in catalyst/CPO mass ratio 1:75, 1:100 and 1:125. Gas product is analyzed by Gas Chromatography apparatus. Besides, to ensure that catalytic reaction happened, the liquid product is distillated, checked for density and analyzed by FTIR. The gas products were CO2, C2H4, C2H2, and hydrocarbon fraction of C3 ? C4 (C3H6, C3H8, and n-C4H10). The research results that the optimum condition in reactions for obtaining hydrocarbon fractions of C3 and C4 was done in 370_C and catalyst/CPO mass ration 1:125. The C3 fractions yielded for 2.12% and 11.53% for C4 fractions. The mass conversion was 50.02%. The difference of density between liquid product and CPO shows that catalytic cracking reaction is occurred. The distillate density was 0.73 g/ml and the IBP was 350°C. The liquid product analysis shows that catalytic reaction occurred, it was showed by the density of distillate is 0.73 g/ml and the loss of ester bond from CPO. Based on the FTIR analysis, CPO cracking was proven by the decreasing of ester cluster, decreasing of ?(CH2)n? bond, and increasing of (?CH3) alkyl in liquid product.
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49801
UI - Skripsi Membership  Universitas Indonesia Library
cover
Safri Saipulloh
Abstrak :
Konversi katalitik minyak sawit menjadi hidrokarbon fraksi gasoline memerlukan pendekatan baru yang lebih ekonomis. Penggunaan senyawa basa untuk mendapatkan biogasoline dari minyak sawit dapat menjadi salah satu solusinya, karena ketersediaan senyawa basa yang lebih banyak dibandingkan senyawa seperti alkohol dan aseton yang pernah digunakan dalam pretreatment konversi minyak sawit menjadi biogaoline. Saponifikasi minyak sawit menggunakan dua jenis basa yang berbeda yaitu KOH dan Al(OH)3 dengan rasio mol stoikiometrik, 10% dan 20% kelebihan minyak sawit. Reaksi katalitik dilangsungkan dalam fixed bed reactor pada suhu 350°C, 400°C dan 450°C dan tekanan atmosferik. Reaksi menggunakan katalis B2O3/Al2O3 dengan loading B2O3 10%, 15%, dan 20% dalam katalis. Produk hidrokarbon dianalisa menggunakan analisa fraksinasi untuk mengetahui kuantitas fraksi gasoline yang dihasilkan. Analisa FTIR digunakan untuk mengetahui kandungan produk yang dihasilkan secara kualitatif. Selain itu, digunakan pula analisa GC dan GC-MS untuk memperjelas kandungan produk yang dihasilkan. Persentase yield digunakan sebagai dasar untuk menentukan kondisi terbaik reaksi dalam penelitian ini. Hasil yang didapatkan menunjukkan, temperatur terbaik reaksi adalah 450°C. Pada temperatur tersebut, katalis yang paling baik adalah 10% B2O3/Al2O3 dengan rasio umpan terbaik adalah 10% kelebihan minyak sawit. Spektra FTIR dan analisa fraksinasi menunjukkan performa basa Al(OH) 3 lebih baik dari pada KOH dalam penelitian ini. ......The Conversion of palm oil to biogasoline trough catalytic cracking needed new approach which economical. One of the solution in producing biogasoline from palm oil is employing base (alkaline). It could become more efficient because their availability are much more compared to alcohol and acetone groups which used in pretreatment of catalytic conversion palm oil to biogasoline. The Saponification of palm oil used two bases, KOH and Al(OH) 3, that varied in mole ratio, stoichiometric, 10% and 20% excess of palm oil. The catalytic cracking reactions occurred in fixed bed reactor at 350°C, 400°C and 450°C in atmospheric pressure. Reactions used B2O3/Al2O3 catalyst with 10%, 15%, and 20% B2O3 loaded in catalyst. Hydrocarbon products analyzed using fractionation analysis to obtain quantities of biogasoline which produced. FTIR analysis was used to identify quality of products by detecting their spectra. To accomplish the analyzing, GC and GC-MS were used to identify specifications of products. Yield percentage was used as basic to know best condition of reactions in this research. It showed that the best temperature was 450_C. At that temperature, the best loading of B2O3 in catalyst was 10% and the best feed ratio was 10% excess of palm oil. Spectra from FTIR analysis showed that Al(OH) 3 performed better than KOH as base in saponification of palm oil to obtain biogasoline. The fractionation analysis showed the same conclusion.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49678
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Adlan
Abstrak :
Perengkahan katalitik minyak jarak menjadi bahan bakar cair telah banyak dilakukan. Keberadaan gugus aktif pada molekul trigliserida minyak jarak dapat menyebabkan terjadinya reaksi polimerisasi dan polikondensasi. Dalam penelitian ini, umpan minyak jarak dicampurkan dengan air. Penambahan air dapat menetralisir atau menstabilkan gugus aktif pada trigliserida dengan jalan hidrolisis. Rasio umpan minyak jarak dan air divariasikan untuk mendapatkan rasio optimum. Reaksi perengkahan dilakukan dalam reaktor fixed bed yang beroperasi pada tekanan atmosferik dan rentang suhu 400-500°C. Katalis yang digunakan berupa hidrid katalis B2O3/Zeolit. Yield gasoline maksimum diperoleh pada rasio 1:1 (berat air/minyak), temperatur 500°C, dengan katalis 20%B2O3/Zeolit, sebesar 19% dengan selektifitas gasoline 40,6%.
The Catalytic convertion of Jatropha oil to liquid fuel over various type has been studied. The active groups of Jatropha oil trigliseride giving occasion to polymerisation and polycondensation reaction. In this research, Jatropha oil was mixtured by water to neutralize or stabilize the active group of Jatropha oil. Feed ratio was variated to get optimum ratio. The reaction was conducted in a fixed bed reactor at atmosferic pressure and temperature 400-500°C over B2O3/Zeolite catalyst. The maximum gasoline fraction yield of 19% with gasoline selectivity of 40,6% was obtained with 20% B2O3/Zeolite, at 500°C, and feed ratio 1:1 (weight water/oil).
Fakultas Teknik Universitas Indonesia, 2009
S51790
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>