Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Devi Permatasari
"Pada penelitian ini, Ni-Co LDH dengan bentuk nanowireberhasil disintesis pada busa nikel melalui metode hidrotermal dan digunakan sebagai elektroda untuk aplikasi superkapasitor tipe baterai. Analisis XRD, SEM, dan TEM digunakan untuk mengkarakterisasi struktur dan morfologi material. Struktur Ni-Co LDH pada busa nikel yang terbentuk memberikan luas permukaan situs aktif yang lebih besar sehingga transfer ion dapat berjalan dengan lebih efektif. Dalam aplikasi superkapasitor tipe baterai, karakteristik tersebut memberikan kinerja elektrokimia yang baik. Pertama, Ni-Co LDH termodifikasi pada busa nikel melalui teknik cyclic voltammertrymenghasilkan kapasitansi spesifik 1124,81 F/g; 608,57 F/g; 513,5 F/g; 426,12 F/g; 308,71 F/g; dan 219,96 F/g padascan rate1; 5; 10; 20; 50; dan 100 mV/s, secara berurutan. Nilai kapasitansi spesifik 1341,44 F/g pada densitas arus 2 A/g dan masih menghasilkan nilai 1302,26 F/g pada densitas arus yang cukup tinggi yaitu 30 A/g. Ni-Co LDH termodifikasi pada busa nikel mencapai energi spesifik yang tinggi yaitu 67,07 Wh/kg dan daya spesifik 339,11 W/kg pada densitas arus 2 A/g. Kedua, Ni-Co LDH mempunyai kestabilan struktur yang baik, yang mana dapat mengarah pada performa elektrokimia yang sangat baik. Setelah 3000 siklus charge-discharge, Ni-Co LDH pada busa nikel menghasilkan nilai persen retensi 96,38% dari kapasitansi awal. Hasil tersebut menunjukkan kinerja material yang sangat baik dan memungkinkannya untuk menjadi bahan elektroda yang menjanjikan untuk perangkat penyimpan energi.

In this study, Ni-Co Layered Double Hydroxide (LDH) nanowire was successfully grown on nickel foam through the hydrothermal method to be used as an electrode for battery type supercapacitor applications. X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were employed to characterize their structure and morphologies. Ni-Co LDH on nickel foam provides a high accessibility for electrolytes ions over the whole surface of the material structure. In battery-type supercapacitor applications, these characteristics ensure the excellent electrochemical performance of material. First, Ni-Co LDH on nickel foam through the cyclic voltammetry technique showed specific capacitance of 1124.81 F / g; 608.57 F / g; 513.5 F / g; 426.12 F / g; 308.71 F / g; and 219.96 F / g at scan rate 1; 5; 10; 20; 50; and 100 mV / s, respectively. The specific capacitance of 1341.44 F / g at a current density of 2 A / g still showed a value of 1302.26 F / g at high current density of 30 A / g. Ni-Co LDH on nickel foam displayed a high energy density of 67.07 Wh / kg and power density of 339.11 W / kg. Secondly, Ni-Co LDH has good structural stability, which lead to excellent electrochemical characterization. After 3000 cycles of charge-discharge, Ni-Co LDH on nickel foam showed the capacitance retention rate of 96.38% of its initial capacitance. These results show excellent material performance and allow it to be a promising electrode material as the candidate for energy storage devices."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saniyah Rizkiyah
"Peningkatan jumlah penduduk dan penggunaan bahan bakar fosil menyebabkan peningkatan konsentrasi karbon dioksida yang berdampak pada berbagai masalah di bumi. Biogas menjadi salah satu sumber energi terbarukan yang dapat menggantikan bahan bakar fosil. Biogas sebagian besar terdiri atas gas metana (CH4) dan gas karbon dioksida (CO2). Namun, keberadaan gas karbon dioksida ini dapat menyebabkan korosi, pengendapan, dan kerusakan pada mesin. Salah satu metode pemisahan CO2 dari biogas adalah secara adsorpsi menggunakan material Metal Organic Framework (MOF). Penelitian ini bertujuan untuk mengidentifikasi karakteristik dan membandingkan kinerja adsorpsi dari MOF berbasis bimetal dengan monometal. Oleh karena itu, pada penelitian ini akan dilakukan sintesis MOF bimetal berbasis nikel-kobalt dengan menggunakan ligan asam benzena 1,4-dikarboksilat melalui metode solvothermal serta modifikasinya dengan etilendiamin 15% menggunakan metode post-synthetic modification. Penambahan gugus polar seperti amina (-NH2) ke dalam Secondary Building Unit (SBU) dilakukan untuk meningkatkan kapasitas adsorpsi gas dari material MOF. MOF hasil sintesis kemudian dikarakterisasi menggunakan XRD, FTIR, SAA-BET, XRF, dan TGA. Hasil uji adsorpsi gas menunjukkan Ni/Co-MOF termodifikasi etilendiamin memiliki kapasitas adsorpsi yang lebih besar dibandingkan dengan jenis MOF monometal dan tanpa modifikasi etilendiamin, yaitu sebesar 24,997 mmol/g. Uji selektivitas adsorpsi gas CO2 dalam campuran gas CO2/CH4 menunjukkan Ni/Co-MOF termodifikasi etilendiamin lebih baik dibandingkan tanpa modifikasi etilendiamin.

The increase in population and use of fossil fuels causes an increase in carbon dioxide concentrations which have an impact on various problems on earth. Biogas is a renewable energy source that can replace fossil fuels. Biogas mostly consists of methane gas (CH4) and carbon dioxide gas (CO2). However, the presence of carbon dioxide gas can cause corrosion, deposition and damage to the engine. One method of separating CO2 from biogas is by adsorption using Metal Organic Framework (MOF) material. This research aims to identify the characteristics and compare the adsorption performance of bimetallic and monometallic based MOFs. Therefore, in this research, a nickel-cobalt based bimetallic MOF will be synthesized using a benzene 1,4-dicarboxylic acid ligand using the solvothermal method and modification with 15% ethylenediamine using the post-synthetic modification method. The addition of polar groups such as amine (-NH2) into the Secondary Building Unit (SBU) is carried out to increase the gas adsorption capacity of the MOF material. The synthesized MOF was then characterized using XRD, FTIR, SAA-BET, XRF, and TGA. The gas adsorption test results show that ethylenediamine-modified Ni/Co-MOF has a greater adsorption capacity compared to monometal MOF and without ethylenediamine modification, namely 24.997 mmol/g. The CO2 gas adsorption selectivity test in the CO2/CH4 gas mixture showed that ethylenediamine-modified Ni/Co-MOF was better than without ethylenediamine modification."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cici Safitri
"Modifikasi permukaan boron-doped-diamond (BDD) dengan Ni-Mn, Ni-Co dan Ni-Cu telah dilakukan untuk digunakan sebagai elektroda kerja pada sistem sel bahan bakar berbasis membran polimer elektrolit (Polymer Electrolyte Membrane Fuel Cell, PEMFC). Modifikasi dilakukan dengan rangkaian teknik wet chemical seeding (pembibitan kimia), electrochemical overgrowth of the seeds (penumbuhan kimia), annealing (pemanasan), serta refreshed and activation. Karakterisasi siklikvoltametri dan XPS menunjukkan spesi elekrokatalis Ni(OH)2 pada sampel Ni-Mn/BDD, Ni-Cu/BDD, dan Ni-Co/BDD dapat dideposisi pada potensial +0,32 V, +0,31 V dan +0.33 V berturut-turut, dengan energi ikat sebesar 855,6 eV. Agar dapat mengelektrooksidasi urea, dilakukan perubahan spesi α-NiOOH menjadi β-NiOOH yang lebih stabil dari Ni(OH)2 dengan siklikvoltametri dalam KOH 1 M selama 300 siklus. Poks tertinggi terdapat pada sampel Ni-Cu/BDD yakni 2.75 μA pada +0,59 V. Namun, pada pengaplikasian urea-PEMFC, Ni-Mn/BDD menunjukkan hasil terbaik menggunakan anolit 0,33 M dan KOH 0,1 M di ruang anoda serta katolit H2O2 2 M dan H2SO4 2 M di ruang katoda dengan densitas daya rata-rata 0,061733 mW/cm2, densitas arus rata-rata 0,185242 mA/cm2, potensial rata-rata sebesar 0,34 V vs SHE, dan efisiensi tegangan maksimal sebesar 15.83%. Sedangkan pada PEMFC berbahan bakar urin, densitas daya rata-rata yang dihasilkan 0.0889 mW/cm2, densitas arus rata-rata 0.189 mA/cm2, potensial rata-rata sebesar 0.66 V vs SHE dengan waktu pengoperasian selama 3600 detik

Surface modification on boron-doped diamond (BDD) using Ni-Mn, Ni-Co dan Ni-Cu have been performed for application as working electrodes in a Polymer Electrolyte Membrane Fuel Cell (PEMFC) system. The series of wet chemical seeding, electrochemical overgrowth of the seeds, annealing, refreshed and activation techniques has been applied to modify the surface area. Characterization using cyclicvoltammetry and XPS indicate that Ni(OH)2 able to be well deposited on Ni-Co/BDD, Ni-Mn/BDD, and Ni-Cu/BDD samples at potential +0,32 V, +0,31 V dan +0.33 V respectively with binding energy as 855,6 eV. To electrooxidize urea, the change of α-NiOOHto β-NiOOH from deposited Ni(OH)2 electrochemicaly can be conducted by giving constant potential for 300 cycles in 1 M KOH. Highest oxidation peak of Ni3+ is belong to Ni-Cu/BDD as high as 2.75 μA at +0,59 V. In contrary, application Ni-Mn/BDD to urea-PEMFC shows best result by using mixture of 0.33 M urea and 0.1 M KOH as anolyte in anodic chamber, while a mixture of 2 M H2O2 and 2 M H2SO4 as chatolyte in cathodic chamber with average power density 0,061733 mW/cm2, current density 0,185242 mA/cm2, and potential of 0,34 V vs SHE with 15,83% of maximum voltage effiency yield. Urine as fuel in PEMFC has been also applied into the system with producing average power density as 0.0889 mW/cm2, 0.189 mA/cm2 for average current density, and 0.66 V vs SHE for open circuit votage for 3600 second of operation time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52013
UI - Tesis Membership  Universitas Indonesia Library
cover
Nuryanti
"Katalis heterogen memiliki berbagai keunggulan diantaranya mudah dipisahkan dengan produk, dapat dipakai ulang dan lebih ramah lingkungan. Sintesis katalis bimetal Ni-Co - yang diammobilisasi dari clay Tapanuli telah dilakukan. Awalnya dilakukan sintesis Na-Bentonit yang bertujuan untuk menyediakan ruang yang cukup untuk ammobilisasi bimetal ke dalam interlayer clay sehingga bimetal dapat terammobilisasi dengan maksimal. Selanjutnya dilakukan ammobilisasi bimetal Ni-Co pada clay Tapanuli sehingga didapatkan katalis bimetal Ni-Co/Na-BP. Katalis bimetal Ni-Co/Na-BP dikarakterisasi menggunakan X-Ray Diffraction, Fourrier Transform Infra Red, Energy Dispersive X-Ray Analysis dan uji katalitik dengan Gas Chromatoghraphy. Hasil Fourrier Transform Infra Red menunjukkan adanya penggantian sejumlah besar kation interlayer yang biasanya ada pada pembentukan hidrat yaitu penurunan intensitas puncak ?OH di bilangan gelombang 1638 cm-1 dan bergeser ke 1628 cm-1 setelah ammobilisasi. Hasil X-Ray Diffraction menunjukkan puncak montmorilonit bergeser dari 2θ = 5,96° ke 8,94° dengan nilai basal spacing sebesar 14,82 Å menjadi 9,86 Å. Hasil ini menunjukkan bahwa logam Ni, dan Co masuk ke interlayer clay melalui mekanisme pertukaran kation. Hasil Energy Dispersive X-Ray Analysis menunjukkan logam Ni dan Co dapat terammobilisasi pada clay dengan perbandingan 1 : 1. Uji katalitik pada reaksi transesterifikasi memperlihatkan bahwa katalis bimetal Ni-Co/Na-BP menghasilkan fatty acid methyl ester terbesar yaitu 2 % serta lebih selektif terhadap produk yang dihasilkan yaitu dapat mengkonversi asam palmitat menjadi metil palmitat lebih banyak sebesar 0,28 %.

Heterogen catalysts have various advantages, they are easy to separate with their product, can be reusable and environment friendly materials. Synthesis Ni-Co bimetallic catalysts that were ammobilized by Tapanuli clay have been carried out. Firstly the synthesis of Na-Bentonite was conducted to allow enough area for ammobilizing bimetal in the clay interlayer. Secondly bimetal Ni-Co ammobilization in the Tapanuli clay and resulted Ni-Co/Na-BP bimetallic catalysts. The immobilization was characterized by X-Ray Diffraction, Fourrier Transform Infra Red, Energy Dispersive X-Ray Analysis and catalytic test with Gas Chromatoghraphy. Fourrier Transform Infra Red spectra showed subtitution of a high number interlayer cation wich consisted of a hidrated formation. This formation decreased the peak intensity of ?OH and this peak shifted from 1638 cm-1 to 1628 cm-1. X-Ray Diffraction spectra showed the montmorillonit peak of 2θ = 5,96° shifted to 2θ = 8.94° with the alteration of basal spacing from 14.82 Å to 9.86 Å. This result indicated the insertion of Ni and Co in interlayer clay with a cation exchange reaction. Energy Dispersive X-Ray Analysis showed the ammobilized of Ni and Co in clay was in ratio 1: 1. Catalytic test in the transesterification reaction showed that Ni-Co/Na-BP bimetallic catalyst yielded biggest fatty acid methyl ester with the amount of 2 % and also was more selective toward product which yielded higher palmitic acid conversion to methyl palmitic with the amount of 0,28 %.
"
Depok: Universitas Indonesia, 2015
T44251
UI - Tesis Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
"Kebutuhan akan listrik di Indonesia semakin meningkat, sementara bahan bakar fosil, yang selama ini menjadi sumber energi utama semakin menipis setiap tahunnya. Sumber energi pengganti yang lebih ramah lingkungan serta efisien sangat diperlukan. Fuel cell dapat mengkonversi energi kimia menjadi listrik, panas, dan air. Urea yang terdapat dalam urin merupakan salah satu komponen yang bisa digunakan sebagai bahan bakar fuel cell. Pada urea terdapat ikatan nitrogen-hidrogen yang mudah diputuskan dan menghasilkan dua molekul gas hidrogen. Apabila gas hidrogen tersebut dilepaskan maka akan menghasilkan listrik. Pada penelitian ini boron-doped diamond BDD termodifikasi dengan Nikel-Kobalt digunakan sebagai elektroda untuk produksi energi listrik dalam fuel cell. Modifikasi BDD dilakukan dengan teknik elektrodeposisi menggunakan 40 mM larutan Ni NO3 2 dan CoCl2 dengan perbandingan 4:1. Hasil pengukuran menunjukkan bahwa densitas daya sebesar 0,1429 mW cm-1 dapat diperoleh selama satu jam pengukuran dalam suhu ruang. Hasil tersebut didapatkan ketika digunakan urea 0,33 mol L-1 dan KOH mol L-1 pada ruang anoda dan H2O2 2 mol L-1 dalam H2SO4 2 mol L-1 pada ruang katoda. Dengan menggunakan kondisi yang sama, pengujian urin sebagai pengganti urea pada ruang anoda menghasilkan daya sebesar 0,0003 mW cm-1.

The need for electricity in Indonesia is increasing while fossil fuels, which have been the main source of energy, are depleting every year. Therefore it is necessary to find another energy sources that are more environmentally friendly and efficient. Fuel cells can convert chemical energy into electricity, heat, and water. Urea contained in urine is one component that can be used as fuel fuel cell. In urea there is an easy to devide nitrogen hydrogen bond, which produces two molecules of hydrogen gas. When the hydrogen gas is released it will generate electricity. In this study, nickel cobalt modified BDD was employed as an electrode to produce electrical energy in the fuel cell. The modification was performed by electrodeposition using 40 mM Ni NO3 2 and CoCl2 solutions in a ratio of 4 1. The power density of 0.1429 mW cm 1 in one hour measurement at a room temperature. The results were obtained when 0.33 mol L 1 urea in 2 mol L 1 KOH was used as a fuel in in the anode chamber, while 2 mol L 1 H2O2 in 2 mol L 1 H2SO4 was used in the cathode chamber. Replacing of urea with urine in the anodic chamber produces a power of 0.0003 mW cm 1.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library