Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Maman Suparman
Abstrak :
Nanokomposit polimer-clay merupakan bahan dengan matrik polimer yang diperkuat dengan nanofiller seperti lapisan silika. Pada penelitian ini pembuatan nanokomposit diawali dengan pembuatan masterbatch organo clay dengan penggunaan pelarut kemudian dicampur dengan polimer. Masterbatch dalam penelitian ini dihasilkan dari pencampuran Organo Layered Silicate (OLS), Ethylene Glycol, dan Polypropylene grafted maleic An hydride (PP-g-MA). Pembuatan nanokomposit polipropilen clay dilakukan di dalam mesin Rheomex (twin screw extruder) dengan mencampur masterbatch dan PP. Pengujian material yang dilakukan adalah pengujian XRD, TEM, HDT, dan uji tarik. Hasil yang diperoleh pada pengukuran HDT menunjukkan kenaikan sebesar 22 % pada komposit OLS Nanomer I.44PT dibanding dengan nilai HDT PP murni. Modulus elastisitas menunjukkan kenaikan sebesar 36 % pada komposit OLS DTDA dibanding dengan PP murni. ......Polimer - clay nanocomposite is a material with a polimer matrix which is toughened by nanofiller such as silica particles. In this research,, nanocomposite was prepared from the production of organoclay masterbatch through a mixture of a solvent and a polymer. The masterbatch were produced from a mixture of organo layered silicate (OLS), Ethylene Glycol, and Polypropylene grafted maleic An hydride (PP-g-MA). The production of PP clay nanocomposite was done in Rheomex machine (twin screw extruder) by mixing the masterbatch and PP. The materials evaluated were using XRD, TEM, HDT, and tensile test. The results of HDT measurement showed that the OLS Nanomer composites were 22 % higher compared to the pristine PP. The modulus of elasticity of OLS ? DTDA composites increased 36 % compared to the pristine PP.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
T21309
UI - Tesis Membership  Universitas Indonesia Library
cover
Siti Allyssa Khairina Muslim
Abstrak :
Kemasan makanan berbasis plastik sintetis telah menimbulkan masalah bagi lingkungan karena limbah yang dihasilkan sulit terdegradasi. Saat ini, telah banyak dikembangkan kemasan makanan berbasis biopolimer karena sifatnya yang mudah terurai alami dan biokompatibel. Penelitian ini bertujuan untuk sintesis film nanokomposit berbasis biopolimer kitosan−PVA dan dikompositkan dengan nanopartikel Co−doped ZnO sebagai nanofiller untuk meningkatkan sifat fungsional dan antibakteri kemasan makanan. Nanopartikel Co(15%)−doped ZnO berhasil dikompositkan dengan kitosan−PVA membentuk film nanokomposit kitosan−PVA /Co−doped ZnO didukung dengan FTIR, XRD, UV-Vis DRS, SEM yang menunjukkan permukaan film tidak rata dan heterogen, dan SEM-EDS yang menunjukkan keberadaan nanopartikel Co−doped ZnO pada matriks biopolimer. Film nanokomposit kitosan−PVA /Co−doped ZnO diperoleh komposisi nanopartikel Co−doped ZnO terbaik yaitu 1,5% yang mana meningkatnya konsentrasi nanopartikel akan meningkatkan ketebalan, kekuatan tarik, dan perpanjangan saat putus, menurunkan kapasitas swelling, kelarutan, transparansi, transmisi cahaya, dan laju transmisi uap air dari film. Konsentrasi release ion Zn2+ dan Co2+ masih berada dibawah ambang batas maksimum menurut European food safety authority (EFSA). Kinetika release ion Zn2+ pada media simulan makanan mengikuti model Higuchi dengan mekanisme release adalah difusi. Film nanokomposit kitosan−PVA/ Co−doped ZnO (1,5%) memberikan aktivitas antibakteri terbaik dengan zona hambat untuk E.coli dan S.aureus masing-masing sebesar 10,4 mm dan 10 mm. Pengembangan film biopolimer kitosan−PVA  dengan nanopartikel Co−doped ZnO mempunyai potensi untuk aplikasi kemasan makanan antibakteri ramah lingkungan di masa depan. ......Synthetic plastic-based food packaging has caused problems for the environment because the waste produced is difficult to degrade. Currently, biopolymer-based food packaging has been developed due to its biodegradability and biocompatible properties. This study aims to synthesize nanocomposite films based on chitosan−PVA biopolymer and composited them with Co−doped ZnO nanoparticles as nanofillers to improve the functional and antibacterial properties of food packaging. Co(15%)−doped ZnO nanoparticles were successfully composited with chitosan−PVA to form chitosan−PVA /Co−doped ZnO nanoparticles supported by FTIR, XRD, UV-Vis DRS, SEM which showed an rough and heterogeneous film surface, and SEM- EDS showing the presence of Co−doped ZnO nanoparticles in the biopolymer matrix. Chitosan−PVA /Co-doped ZnO nanocomposite film obtained the best Co−doped ZnO nanoparticle composition of 1.5% in which increasing nanoparticle concentration increases thickness, tensile strength, and elongation at break, decreasing swelling capacity, solubility, transparency, light transmission, and the water vapor transmission rate of the film. Release concentrations of Zn2+ and Co2+ ions are still below the maximum threshold according to the European food safety authority (EFSA). The kinetic release of Zn2+ ion in food simulants media follows the Higuchi model with the release mechanism is diffusion. Chitosan−PVA/Co−dopedZnO (1.5%) nanocomposite films provided the best antibacterial activity with inhibition zones for E.coli and S.aureus of 10.4 mm and 10 mm, respectively. The development of chitosan−PVA biopolymer films with Co−doped ZnO nanoparticles has the potential for future applications of environmentally friendly antibacterial food packaging.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darmansyah
Abstrak :
Indonesia adalah negara yang memiliki potensi besar dalam sumber daya alam, potensi-potensi alam tersebut yang dapat dikembangkan salah satunya adalah serat alam. Serat alam yang cukup potensial untuk dikembangkan lebih jauh saat ini adalah serat nata de coco. Nata de coco adalah hasil proses fermentasi air kelapa dengan menggunakan bakteri Acetobacter xylinum. Secara kimiawi, serat yang terkandung di dalam nata de coco adalah selulosa, dimana saat ini serat selulosa telah diaplikasikan untuk berbagai keperluan lain, misalnya untuk diafragma transduser, kulit buatan, bahan pencampuran kertas, karbon film elektrokonduktif dan lain sebagainya. Untuk mendapatkan material serat yang kuat diperlukan perlakuan khusus, yaitu dengan menambahkan material lain seperti nanofiller SiO2, Al2O3, dan clay, lalu dipadukan dengan berbagai jenis resin, sehingga material komposit berbahan dasar serat tersebut, memiliki sifat yang lebih kuat dari logam alloy dan material high strength lainnya. Dalam penelitian ini telah dilakukan pembuatan serat nata de coco dan komposit serat-filler-resin, yang mana variasi nutrisi dan pH yang paling baik adalah variasi dengan konsentrasi gula 2,0% w/v; urea 0,5% w/v dan asam asetat 0,3% v/v (pH 3,8), variasi ini menghasilkan tebal serat basah sekitar 14,57 mm dan massa serat sekitar 595 gram dari 700 ml media air kelapa. Dari karakterisasi dengan menggunakan XRD diketahui bahwa struktur serat nata de coco yang dibuat adalah material serat selulosa dengan puncak intensitas utama terletak pada posisi 2θ di antara 26º ? 26,5º. Sedangkan pengujian dengan menggunakan SEMEDX menunjukkan bahwa nanofiller telah terdistribusi merata di dalam serat. Dan dari uji mekanik dengan menggunakan alat uji kuat tarik (Ultimate Tensile Strength) diketahui pula bahwa serat nata de coco murni memiliki kuat tarik sebesar 390,39 MPa dan young modulus sekitar 11,198 GPa.
Indonesia is the country that has great potential of natural resources, natural potentials that can be developed is a natural fiber. One of the potential natural fibers that can be developed at this time is nata de coco. Nata de coco is a result of fermentation of coconut water using the bacteria Acetobacter xylinum. Fiber contained in the Nata de coco is cellulose, cellulose fibers, where it currently has can be applied to various other purposes such as the diaphragm transducer, artificial leather, paper mixing materials, carbon film electro-conductive and etc. To obtain a strong fiber material required special treatment, namely by adding other materials such as nanoparticles of SiO2, Al2O3, and clay, then combined with various types of resin, so that the composite fiber materials have properties that are stronger than metal alloy and other material high strength. In this study has been carried out making nata de coco fiber and composite fiber-resin-filler, in which variations of nutrients and pH is the best concentration variation of sugar 2.0% w/v; urea 0.5% w/v and acetate acid 0.3% v/v (pH 3.8), this variation produces a thick fiber of about 14.57 mm and wet mass fiber of approximately 595 grams for 700 ml medium of coconut water. From the XRD pattern is known that the structure of pure nata de coco fiber is cellulose fiber material with the main peak intensity located 2θ positions around 26º ? 26,5º. While for the examination by using SEM-EDX is known that the filler material has been distributed uniformly in the fiber. And from mechanical tests using The Ultimate Tensile Strength is shown that pure nata de coco fiber has tensile strength of 390.39 MPa and young modulus around 11,198 GPa.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27911
UI - Tesis Open  Universitas Indonesia Library
cover
Dewa Gde Weda Krishna Ditha Rasanji
Abstrak :
Nanokomposit selulosa asetat telah disintesis dengan menggunakan nanofiller organoclay yang dimodifikasi dengan TiO2. Bentonit Tapanuli yang sebelumnya dikenai proses purifikasi dan penyeragaman kation dimodifikasi dengan ditambahkan TiO2 dengan persen berat yakni 0%, 1%, 3%, 5%, dan 10% terhadap total komposit. Analisis FTIR menunjukkan interkalasi surfaktan telah berhasil dilakukan dengan adanya pita serapan baru dari HDTMABr pada 2636 cm-1 dan 2569 cm-1. Pembuatan nanokomposit dilakukan dengan menggunakan aseton sebagai pelarut dan metode solvent casting sebagai teknik untuk pembuatan film nanokomposit. Aplikasi nanokomposit berupa uji fotodegradasi pada penyinaran sinar matahari langsung, lampu UV, dan tanpa penyinaran selama tiga puluh hari. Diketahui, semakin banyak TiO2 semakin besar komposit yang terdegradasi. Persen penurunan berat hasil uji aplikasi pada penyinaran lampu UV sebesar 4,02% , 13,45%, 18,66%, 22,35%, 27,86%, pada penyinaran langsung sebesar 2,15%, 8,49%, 13,85%, 14,70%, 15,02%, dan pada tanpa penyinaran sebesar 0,16%, 0,16%, 0,18%, 0,20%, 0,26%. Modifikasi nanokomposit dengan penambahan TiO2 sebagai agen fotokatalitik menambahkan sifat baru berupa kemampuan fotodegradas.
Nanocomposite cellulose acetate has been synthesized using organoclay nanofiller modified with TiO2. Tapanuli Bentonite were previously subjected to processes of purification and unification of cations then modified with TiO2 that was added as much 0%, 1%, 3%, 5%, 10% weight of the total composite. FTIR analysis showed intercalation with surfactant was successfully carried out in the presence of HDTMABr, indicated by new absorption band at 2636 cm-1 and 2569 cm-1. Fabrication of nanocomposite film was carried out using acetone as solvent and through solvent casting method. Nanocomposite application in photodegradation test was carried out under direct sunlight radiation, UV light, and without irradiation for thirty days. It's found that the greater the presence amount of TiO2 in the composites, the more weight loss occured due to photodegredation. Percent weight loss in the UV light irradiation are 4,02% , 13,45%, 18,66%, 22,35%, 27,86%, while under direct irradiation, the weight loss was 2,15%, 8,49%, 13,85%, 14,70%, 15,02%, and while without light irradiation was 0,16%, 0,16%, 0,18%, 0,20%, 0,26%. Modification of nanocomposite with the addition of photocatalytic TiO2 as photocatalytic agent has shown the ability of self photodegradation of nanocomposit.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64249
UI - Skripsi Membership  Universitas Indonesia Library
cover
Priscilla Deni
Abstrak :
Bioplastik berbahan dasar pati dan serat alam yang dihasilkan dari penelitian-penelitian terdahulu masih berlum mampu menyamai kualitas plastik konvensional terutama dalam hal kekuatan mekanis, ketahanan terhadap air serta stabilitas termalnya. Penelitian ini bertujuan untuk meningkatkan kualitas bioplastik melalui teknik praperlakuan serat, modifikasi nanofiller dan penggunaan filler hibrid. Bahan baku utama yang digunakan dalam penelitian ini yaitu pati jagung sebagai matriks, serat batang pisang dan selulosa bakteri sebagai filler dan gliserol sebagai plasticizer. Serat batang pisang diberi praperlakuan meliputi metode alkalinasi, bleaching dan enzimatis. Kemudian serat batang pisang yang telah diberi praperlakuan optimum dan selulosa bakteri akan dipreparasi melalui teknik hidrolisis menjadi nanoselulosa. Nanoselulosa serat dan bakteri inilah yang akan digunakan sebagai filler hibrid dalam bioplastik. Bioplastik yang dihasilkan akan dikarakterisasi sifat mekanisnya, laju transmisi uap air, stabilitas termal, dan biodegradabilitasnya. Struktur dari bioplastik dikonfirmasi dengan analisis FESEM, FTIR dan XRD. Praperlakuan serat dan penggunaan nanofiller terbukti mampu meningkatkan karakteristik mekanis dari bioplastik yang dihasilkan dengan persentase nanofiller optimum adalah 15% dari massa pati. Komposisi filler hibrid dengan nilai kuat tarik tertinggi dimiliki oleh bioplastik dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 50:50 sebesar 1,73 MPa dan untuk modulus Young tertinggi dimiliki bioplastik dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 25:75 sebesar 60,19 MPa. Penggunaan filler hibrid tidak menghasilkan peningkatan karakteristik mekanis bioplastik tetapi meningkatkan ketahanan terhadap air dan stabilitas termal bioplastik. Ketahanan terhadap air terbaik dimiliki oleh bioplastik dengan filler sebanyak 15% dengan rasio nanoselulosa serat terhadap nanoselulosa bakteri 25:75 yakni laju transmisi uap air sebesar 632 g/m2 per 24 jam. Stabilitas termal terbaik dimiliki oleh bioplastik dengan filler sebanyak 15% dengan rasio nanoselulosa bakteri terhadap nanoselulosa serat 25:75 yakni temperatur trasisi gelas 39,75 °C dan kapasitas panas 0,242 J/g°C. Berdasarikan soil burial test selama 9 hari, diperoleh bahwa bioplastik degan tingkat biodegradasi tertinggi dimiliki oleh pati jagung tanpa filler sebesar 25,76% dan biodegradasi terendah oleh bioplastik dengan filler 15% nanoselulosa bakteri sebesar 18,88%. Soil burial test dilakukan pada kelembaban 66% dan temperatur 26-28 °C. ...... Bioplastic based on starch and natural fibre resulted from previous reserachs have not had the same quality as conventional plastic especially in mechanical strength, water absorption resistance, and thermal stability. The objective of this reasearch is to improve the wuality of bioplastic resulted from previous researchs through fibre pretreatment techniques, nanofiller modification, and hybrid filler utilization. The main raw materials that are used in this research are corn starch as matrix, banana pseudostem fibre and bacterial cellulose as filler, and glycerol as plasticizer. Banana pseudostem fibre is treated by alkalinization, bleaching and enzymatic method. Then optimum treated banana pseudostem and bacterial cellulose will be prepared through hydrolysis technique into nanocellulose. These fibre and bacterial nanocellulose will be used as hybrid filler in bioplastic. Bioplastic’s mechanical characteristic, water vapour transmission rate, thermal stability and biodegradability will be characterized. Bioplastic’s structure will be confirmed by FESEM, FTIR, and XRD analysis. Utilization of nanofiller dan fibre pretreatment can improve mechanical characteristic of bioplastic. Nanofiller percentage that resulted in the best mechanical characteristic is 15% from starch mass content. Hybridfiller composition that results in highest tensile strength is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 50:50 with value 1,73 MPa and the highest modulus Young is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 25:75 with value 60,19 MPa. The best water absorption resistance is obtained by bioplastic with fibre nanocellulose to bacterial nanocellulose ratio 25:75 with water vapour transmission rate value 632 g/m2 per 24 hours. The highest thermal stability is obtained by bioplastic with bacterial nanocellulose to fibre nanocellulose ratio 25:75 with glass transition temperature value 39,758°C and heat capacity 0,242 J/g0C. Based on soil burial test for 9 days, the highest biodegradation rate is obtained by corn starch without filler 25,76% and the lowest by bioplastic with 15% bacterial nanocellulose 18,88%. Soil burial test is done in 66% humidity and temperature 26-28°C.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54853
UI - Skripsi Membership  Universitas Indonesia Library