Dengue is an acute disease caused by an RNA virus belonging to the Flaviviridae family. The aim of this study is to identify natural compound isoflavone as an in silico inhibitor of the NS5 protein in DENV serotypes 1–4, analyze the interactions between the NS5 protein and isoflavone compound ligands, and elucidate the pharmacokinetic processes, including Absorption, Distribution, Metabolism, and Excretion (ADME), as well as toxicity of the natural compound ligands. The 3-dimensional structure of the protease was obtained from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RSCB PDB), and isoflavone compound ligands were sourced from PubChem. Drug property screening against the ligands was conducted using OSIRIS DataWarrior software. Molecular docking simulations were performed using rigid and induced fit docking protocols on the NS5 protease using Molecular Operating Environment (MOE) 2014.09 software. Analysis of drug ADME properties and toxicity was carried out using OSIRIS DataWarrior as well as pkCSM and SwissADME websites. The results of this study prove that the natural compound of Isoflavonoids have the potential to inhibit the DENV NS5 protein based on its âGbinding and RMSD values. The interactions that occur are hydrogen bond interactions and aromatic ring interactions with hydrogen. Compounds with substance identifier (SID) 11655056, 14185735, 6708635, dan 5464170 with low âGbinding values, RMSD values below 2 Ã , as well as good pharmacokinetic and medicinal chemistry properties were considered as good DENV serotypes 1–4 drug candidate.