Konsumsi energi nasional secara signifikan dikontribusikan oleh tenaga listrik rumah tangga. Untuk mengetahui penggunaan energi listrik di setiap peralatan listrik rumah tangga, teknik yang disebut Non-Intrusive Load Monitoring (NILM) digunakan. NILM adalah alat untuk memantau dan mengidentifikasi kekuatan setiap peralatan listrik. Baru-baru ini beberapa metode klasifikasi data seperti jaringan saraf, pembelajaran mendalam telah diterapkan untuk mengembangkan NILM. Dalam tulisan ini, metode naive bayes digunakan untuk NILM. Metode ini untuk mengklasifikasikan kondisi on-off peralatan listrik. Untuk meningkatkan akurasi, metode preprocessing data yang normalisasi dan diskritisasi digunakan. Perbandingan kinerja dievaluasi untuk setiap metode. Dalam tulisan ini, dataset REDD digunakan. Metode Supervised learning yang digunakan adalah Naive Bayes dan K Nearest Neighbour. Hasil simulasi menunjukkan bahwa dua metode ini dapat mengenali data NILM dengan akurasi yang tinggi. Metode naive bayes dengan diskritisasi memperoleh akurasi tertinggi dengan nilai 96.64% diikuti oleh KNN dengan k =5 dengan nilai 96.1287%.
National energy consumption is significantly contributed by household electricity. To find out the use of electrical energy in every household electrical equipment, a technique called Non-Intrusive Load Monitoring (NILM) used. NILM is a tool to monitor and identify the strength of each electrical equipment. Recently several methods of data classification such as neural networks, deep learning have been applied to develop NILM. In this paper, the naive Bayes method used for NILM. This method is to classify the conditions of on-off electrical equipment. Accuracy to improve, data preprocessing techniques that are normalised and discretised used. Performance comparisons are evaluated for each method. In this paper, the REDD dataset used. The Supervised learning method used is Naive Bayes and K Nearest Neighbor. The simulation results of the two classification methods can recognise NILM data with high accuracy, the naive Bayes method with discretisation obtained the highest accuracy with an amount of 96.64% followed by KNN with 5 with a value of 96.1287%.
Informasi mengenai penggunaan energi listrik merupakan salah satu elemen penting dalam hal pengaturan distribusi jaringan listrik pada jaringan pintar skala kecil (smart micro grid). Selain itu informasi pemakaian energi listrik dapat membantu konsumen melakukan proses evaluasi pemakaian energi listrik untuk menekan biaya tagihan pembayaran listrik yang secara tidak langsung berpengaruh pada efisensi energi keseluruhan. Salah satu metode dalam proses pemantauan pemakaian energi listrik adalah Non-Intrusive Load Monitoring (NILM). Permasalahan utama dalam NILM adalah mengetahui peralatan-peralatan elektronik yang ada dan mengetahui konsumsi energi listrik masing-masing peralatan dengan hanya melakukan proses pengambilan data hanya dari satu titik yang terhubung dengan semua peralatan elektronik pada jaringan listrik. Berdasarkan hasil pengujian menggunakan dataset AMPds dan REDD, nilai akurasi terendah yang didapatkan adalah sebesar 96,69% pada semua pengujian yang dilakukan.
Information on electricity consumption is one of the essential elements in terms of regulating the distribution of electricity in smart micro grid. Besides, information on electricity consumption can help consumers carry out an evaluation process to reduce electricity bill costs, which indirectly affect overall energy efficiency. One method in the process of monitoring electricity consumption is Non-Intrusive Load Monitoring (NILM). The main problem in NILM is electronic disaggregation equipment that exists and determines the electrical energy consumption of each appliance by merely performing the retrieval of data from only one point connected with all the electronic devices on the electrical grid. Based on the results of tests conducted using the REDD and AMPds dataset, the lowest accuracy was 96.69% for all tests performed.