Misalkan G=(V(G),E(G)) adalah graf dengan himpunan simpul V(G) dan himpunan busur E(G). Misalkan fâ¶E→{1,2,… ,|E(G)|} suatu pemetaan bijektif. Untuk setiap simpul u ∈V(G), bobot dari simpul u adalah w(u)=∑_(e∈E(u))âãf(e)ã, dimana E(u) adalah himpunan busur yang bersisian dengan u. Jika untuk setiap u, v∈V(G) berlaku w(u)≠w(v) maka f disebut pelabelan antiajaib dari G. Selanjutnya, f disebut pelabelan antiajaib lokal jika untuk u,v∈V(G) dengan u dan v bertetangga, maka w(u)≠w(v). Pelabelan antiajaib lokal memunculkan sifat pewarnaan simpul dimana ... "