Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 34 dokumen yang sesuai dengan query
cover
Rifa Satria
Abstrak :
ABSTRAK
Senyawa Li4Ti5O12 atau yang biasa disingkat dengan LTO, adalah salah satu jenis senyawa yang sering digunakan untuk komponen anoda dalam baterai. Kelebihan yang dimiliki adalah usia pakai yang panjang akibat sifat zero strain yang dimiliki saat material mengalami insersi dan ekstraksi ion lithium. Namun kapasitas yang dimiliki masih tergolong rendah, yaitu bernilai 175 mAh/g. Oleh karena itu, untuk dapat meningkatkan kapasitas anoda LTO dilakukan pembuatan komposit LTO. Doping element yang digunakan adalah nano Si, dimana dengan penggunaan partikel berskala nano diharapkan dapat meningkatkan performa baterai lebih jauh sebagai efek dari luas permukaan partikel yang lebih besar. Dalam penelitian ini LTO disintesis dengan metode hidrothermal-mekanokimia sebelum dilakukan pencampuran dengan nano Si. Variasi persentase massa Si yang digunakan adalah 1 , 5 , dan 10 . Karakterisasi yang digunakan adalah XRD, SEM, serta TEM. Sementara untuk pengujian performa baterai dilakukan pengujian EIS, CV, serta CD. Penelitian ini akan membahas efek dari mixing Si pada performa komposit LTO/Si. Hasil pengujian CV menunjukkan bahwa kapasitas terbesar diperoleh pada sampel LTO/Si-10 dengan kapasitas sebesar 216.15 mAh/g.
ABSTRACT
Li4Ti5O12 or LTO is one of many compounds that could be used as anode in lithium battery. One of the main advantages of using LTO as an anode is its long cycle life which is affected by its zero strain property during insertion and extraction of lithium ions. Despite its advantages, LTO still has problems such as limited capacity on 175 mAh g. Researchers have tried many methods to increasing the capcaity of LTO, such as making a composite from LTO host. In this composite, nano Si is used as doping element because its high theoritical capacity could increase the overall capacity of the LTO composite. In this research, LTO was synthesized by hydrothermal mechanochemical methods before we combine it with nano Si. The mass variation of nano Si was 1 , 5 , and 10 in wt. XRD, SEM, and TEM were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of Si on the LTO Si composite performance. From the CV testing, it is known that the highest capacity was obtained from LTO Si 10 sample with 216.15 mAh g.
2017
S66667
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Betalia
Abstrak :
LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.
LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
Abstrak :
Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.
The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panjaitan, Abyan Abdillah Saoloan
Abstrak :
Konsistensi kenaikan produksi plastik diyakini meningkatkan jumlah limbah plastik yang terbuat. Diperkirakan sampah plastik yang dianggap salah dikelola di Indonesia per 2020 mencapai 4.8 juta ton/tahun, dengan kriteria 48% sampah dibakar, 13% dibuang di darat atau tempat pembuangan sampah tidak resmi, serta 9% ke saluran air laut. Oleh karena itu, diperlukan cara pengelolaan sampah yang tepat yaitu dengan cara mendaur ulang sampah plastik. Salah satu daur ulang sampah yang canggih adalah pemanfaatkan sampah plastik menjadi energi terbarukan seperti baterai. Dalam penelitian ini, LTO disintesis dengan karbon aktif (AC) yang dasar dari sampah pelastik (PET), dengan komposisi karbon aktif yang berbeda sebesar 3 wt%, 5 wt%, dan 7 wt%. Karbon aktif tersebut terbuat dari campuran sampah pelastik dan bentonit (9:1) yang dikarbonisasi melalui tungku pembakaran pada suhu 400 °C dalam atmosfer inert nitrogen menjadi karbon amorf hitam. Setelah karbonisasi, karbon tersebut diaktivasi melalui proses empat utama: pencampuran dengan NaOH, sintering dalam atmosfir nitrogen, pencucian, dan pengeringan. LTO/AC yang sudah disintesis lalu diubah menjadi anoda baterai lithium-ion setengah sel. Kemudian anoda tersebut dikarakterisasi melalui Uji Voltametri Siklus, Uji Pengisian Daya Muatan (CD) dan Spektroskopi Impedansi Listrik (EIS). Hasil akhir dari pengujian ini menunjukkan bahwa penambahan karbon aktif dapat meningkatkan konduktifitas dari baterai lithium-setengah sel. Sesuai dengan hasil pengujian CV, penambahan karbon sebesar 7% wt% meningkatkan kapasitas spesifik sebesar 143.4 (mAh/g). Hasil pengujian pada penelitian ini menunjukkan bahwa penambahan karbon aktif optimal adalah sebesar 7 wt%. ......The consistent increase in plastic production is believed to increase the amount of plastic waste made. It is estimated that plastic waste that is considered to be mismanaged in Indonesia as of 2020 will reach 4.8 million tons/year, with the criteria that 48% of waste is burned, 13% is disposed of on land or unofficial landfills, and 9% into seawater. Therefore, proper waste management is needed, namely by recycling plastic waste. One of the sophisticated waste recycling is the utilization of plastic waste into renewable energy such as batteries. In this research, LTO/AC was synthesized with activated carbon made of plastic waste, the different composition of 3 wt%, 5 wt%, and 7 wt% has been carried out. The activated carbon was made using the mixture of plastic waste and bentonite nano clay (9:1) that will go through the slow pyrolysis carbonization process, which is performed under 400°C in an inert atmosphere of N2 with the help of a furnace into black amorphous carbon. After the carbonization, the carbon is activated through four main stages: mixing with NaOH, sintering under a nitrogen atmosphere, washing, and drying. The synthesized LTO/AC materials are then formed into a half-cell lithium-ion battery anode. The half cell lithium-ion battery anodes are then examined using the Cycle Voltammetry Test, Charge Discharge (CD) Test, and Electrical Impedance Spectroscopy (EIS). The final result of this research shows that activated carbon can increase the conductivity of the half-cell lithium battery. According to the results of the CV test, the addition of 7% wt% carbon resulted in a specific capacity of 143.4 (mAh/g). The test results in this research indicate that the optimal addition of activated carbon is 7 wt%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
Abstrak :
Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk. ......Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faizah
Abstrak :
ABSTRAK
Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun litium titanat memiliki kelemahan yaitu konduktivitas listrik dan difusi ion litium yang rendah. Penelitian ini dilakukan proses sintesis dengan menggunakan metode gabungan hidrotermal dan mekanokimia. Proses fabrikasi baterai dengan penambahan material aditif acetylene black (AB) dengan variasi berat 10%, 12% dan 15%. Tujuan penambahan aditif untuk meningkatkan konduktivitas listrik. Karakterisasi material dengan menggunakan SEM-EDS, XRD dan BET. Hasil karakterisasi SEM-EDS menunjukkan persebaran partikel hampir homogen dengan rata-rata ukuran partikel 0,35 μm. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile hasil XRD dan luas permukaan yang terbentuk dengan pengujian BET adalah 2,26 m2/g. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivatas yang besar didapatkan pada kadar AB terbanyak. Sedangkan hasil uji cyclic voltammetry dan charge-discharge didapatkan hasil yaitu semakin banyak penambahan kadar AB yang diberikan maka kapasitas spesifik baterai semakin menurun. Kapasitas terbesar pada rate tinggi 10C didapatkan pada kadar 10% dengan kapasitas spesifik sebesar 40,91 mAh/g.
ABSTRACT
Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replacement graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t charge during intercalation and de-intercalation process Li+ ions. However, lithium titanate has good stability, the material has lower electrical conductivity and lower lithium ion diffusion. This research, synthesis process were accomplished by using a combinated of hydrothermal and mechanochemical process. In battery fabrication process with an acetylene black conductive (AB) additive of the mass variation was 10%, 12% and 15% in wt. The purpose of using additive acetylene black to increase the electric conductivity. Materials characterization using SEM-EDS, XRD and BET. SEM characterization result show homogeneous distribution of particle with an average particel size of 0.35 μm. Li4Ti5O12 spinel phase and TiO2 rutile XRD result and the surface area formed by BET is 2.26 m2/g. Made coin cell batteries half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Test performance battery with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). Conductivity great value obtained at the highest levels of AB. Meanwhile, cyclic voltammetry and charge-discharge testing the result show that higher percentage of AB causing the decrease of battery specific capacity. The capacity specific at a high rate of 10C at a level of 10% with the specific capacity of 40.91 mAh/g.
2016
S62870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Mochamad Abdurrahman
Abstrak :
ABSTRAK
Penelitian ini membahas pengaruh kadar aditif Acetylene Black terhadap performa baterai lithium ion dengan anoda Li4Ti5O12. Material aktif Li4Ti5O12 untuk anoda baterai ion litium telah berhasil dibuat dari xerogel TiO2 yang dibuat menggunakan metode sol-gel, dilanjutkan dengan proses ball-milling, dan sintering. Identifikasi fasa, morfologi, dan luas permukaan material dikarakterisasi menggunakan pengujian XRD, SEM-EDS, dan BET. Terbentuk fasa spinel Li4Ti5O12 dan TiO2 rutile pada hasil XRD. Morfologi Li4Ti5O12 yang terbentuk menunjukkan adanya aglomerasi. Hasil sintesis Li4Ti5O12 dibuat lembaran elektrodanya dan dicampur dengan binder PVDF (10%wt) dan aditif AB sebesar 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), dan 15%wt (LTO2 AC-3). Baterai sel koin dibuat secara setengah sel (half cell) menggunakan elektroda litium. Pengujian performa baterai dilakukan menggunakan cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), dan charge discharge (CD). Nilai tahanan yang paling tinggi didapatkan pada sampel LTO2 AC-3. Penyebabnya diperkirakan karena terbentuknya produk samping reaksi pada permukaan elektroda di siklus awal karena reaktivitas elektroda LTO2 AC-3 yang tinggi. Kapasitas awal tertinggi didapatkan pada sampel dengan kadar AB 10%wt (LTO2 AC-1) pada pengujian CV dan CD pada rate awal dikarenakan kadar material aktifnya yang paling tinggi. Pada pengujian performa baterai menggunakan Charge-discharge, Rate-capability terbaik didapatkan pada sampel dengan kadar AB 15% dimana terdapat kapasitas sebesar 24,12 mAh/g pada rate 10C dengan kapasitas yang hilang sebesar 71,34%. Dalam penelitian ini disimpulkan bahwa penambahan kadar AB dapat meningkatkan ketahanan siklus dari baterai dan juga akan meningkatkan rate-capability-nya. Peningkatan reaktivitas, luas permukaan, dan konduktivitas dari elektroda diperkirakan menjadi penyebab fenomena ini. Hal ini didukung oleh hasil pengujian EIS, CV, dan CD dari ketiga sampel yang diujikan
ABSTRACT
This research was talking about the influence of Acetylene Black additives content in Li-ion Batteries performance with Li4Ti5O12 anode. Li4Ti5O12 active material for Li-ion batteries anode was successfully made using sol-gel method to form TiO2 xerogel continued with ball-milling and sintering process. XRD, SEM-EDS, and BET, was performed to identify the phase, morphology, and surface area of LTO powder. Spinel Li4Ti5O12 and TiO2 rutile was detected in XRD test. Li4Ti5O12 morphology show presence of agglomerates structure. Electrode sheet then be made with Li4Ti5O12 from previous process and mixed with PVDF binder (10%wt) and AB additives 10%wt (LTO2 AC-1), 12%wt (LTO2 AC-2), and 15%wt (LTO2 AC-3) of total weight solid content. Half cell coin battery was made with lithium counter electrode. Cyclic voltammetry (CV), Electro-impendance spectroscopy (EIS), and charge discharge (CD) test used to examine the battery performance. Highest resistance value obtained in LTO2 AC-3 sample. It may be caused by the formation of side reaction product on electrode surface at initial cycle due to high reactivity of LTO2 AC-3 electrode. Greatest initial capacity at CV test and CD test was obtain in LTO2 AC-1 (10%wt AB) sample, due to highest active material content. When charge-discharge test, the best sample rate-capability performance falls to LTO2 AC-3 sample (15%wt AB), where there was still have 24.12 mAhg of discharge capacity at 10 C with 71.34% capacity loss. In this research, writer conclude that Increasing AB content could lead to rate-capability and cycling performance improvement. Reactivity, surface area, and conductivirty enhancement in electrode may be caused by this phenomenon. This fact supported by charge-discharge, cyclic voltammetry, and electro-impendance spectroscopy data.;
2016
S65655
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Tri Alona Sari
Abstrak :
ABSTRAK
Litium titanat (Li4Ti5O12) merupakan anoda yang menjanjikan untuk menghasilkan baterai Lithium Ion dengan kapasitas daya yang tinggi. Selain itu, Silikon memiliki kapasitas secara teori sebesar 3590 mAh g-1 untuk fasa Li15Si4 di temperatur ruang. Akan tetapi memiliki kekurangan dalam ekspansi volume yang besar selama cycling dan memperpendek siklus hidup baterai, ketidakstabilan layer SEI karena perubahan material Si, dan konduktivitas elektrik yang rendah. Akan tetapi nano partikel dari Si memiliki kapasitas spesifik yang lebih tinggi dan kapasitas penyimpanan yang lebih baik apabila dibandingkan dengan partikel Si yang memiliki ukuran mikro. Sehingga dilakukan penelitian Li4Ti5O12 dan nano silikon memiliki sinergi yang baik dalam dalam kapasitas sebagai komposit. Penelitian ini dilakukan proses sintesis dengan menggunakan metode solid state. Pengaruh solid state-ball mill pada karakterisasi serbuk Li4T5O12 yang dihasilkan memiliki ukuran rata-rata partikel 225,95 nm dan tingkat kristalinitas 67%. Pada proses fabrikasi baterai dilakukan dengan penambahan material aktif nano silikon dengan variasi masa 5%, 10% dan 15%. Tujuan penambahan material aktif agar mampu meningkatkan kapasitas dari baterai. Kapasitas yang dimiliki oleh LTO-nSi5 sebesar 191,58 mAh/g, LTO-nSi10 197,5 mAh/g, LTO-nSi15 sebesar 195,6 mAh/g. LTO-nSi10 memiliki nilai konduktivitas yang paling besar dibandingkan LTO-nSi5 dan LTO-nSi15. Sampel LTO-nSi15 menunjukkan nilai resistivitas yang paling besar, menunjukkan bahwa nilai konduktivitas yang didapatkan semakin rendah disetiap penambahan kadar silikon nano.
ABSTRAK
Lithium titanate (Li4Ti5O12) is a promising anode to produce Lithium Ion battery with high power. In addition, silicon has a theoretical capacity of 3590 mAh g-1 to phase Li15Si4 at room temperature. But lacked by the large volume expansion during cycling and shorten the cycle life of the battery, SEI layer instability due to a material change Si, and low electrical conductivity. However nano particles of Si has higher specific capacity and storage capacity are better when compared with Si particles that has a micro sizes. In this research Li4Ti5O12 and nano silicon has a good synergy in the capacity of battery as a composite. This research was synthesized by using solid state methods. Effect of solid-state route and ball mill at Li4T5O12 powder produced has an average particle size of 225.95 nm and the degree of crystallinity of 67%. In the battery fabrication process is done by adding the active material to the silicon nano variation of 5%, 10% and 15% in wt. The additions of active material in order to raise the capacity of the battery. Capacity owned by LTO-nSi5 of 191.58 mAh / g, LTO-nSi10 197.5 mAh / g, and LTO-nSi15 195.6 mAh / g. LTO-nSi10 has the greatest conductivity values ​​compared LTO-nSi5 and LTO-nSi15. LTO-nSi15 samples showed the greatest resistivity values, indicating that the conductivity values ​​obtained at each addition of the lower grade of silicon nano.
2016
S63161
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nita Dianova
Abstrak :
Litium titanat (Li4Ti5O12) merupakan salah satu alternatif elektroda anoda yang dapat menggantikan grafit pada baterai Li-ion. Kelebihan litium titanat dibandingkan grafit adalah kestabilan struktur kristal hampir tidak mengalami perubahan selama interkalasi dan de-interkalasi ion Li+. Namun seiring dengan kebutuhan akan baterai dengan kapasitas yang tinggi, kian mendorong untuk meningkatkan kapasitas baterai Li-ion. Salah satu cara yang dapat dilakukan untuk meningkatkanya adalah dengan menggabungkanya dengan material silikon yang memiliki kapasitas yang tinggi mencapai 4200 mAh/g. Namun ekspansi volume Si menyebabkan keruntuhan elektroda dan hilangnya kapasitas. Oleh karna itu digunakanlah Si nano untuk meminimalisir efek ekspansi volume. Penelitian ini dilakukan proses fabrikasi baterai dengan penambahan Si nano partikel dengan variasi berat 5%, 10% dan 15%. . Karakterisasi material awal Si nano dengan menggunakan TEM-EDS dan XRD menunjukan adanya unsur oksigen dan fasa SiO pada partikel Si nano. Baterai sel koin dibuat sel setengah dengan menggunakan Li4Ti5O12 sebagai katoda dan logam litium sebagai anoda. Uji performa sel baterai dengan electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) dan charge discharge (CD). Nilai konduktivitas semakin menurun seiring dengan peningkatan kadar Si nano, pada hasil pengujian CV menunjukan kapasitas paling tinggi pada penambahan 5% Si nano yaitu mencapai 197,09. Hasil pengujian CD menunjukan semakin meningkatnya kadar Si nano kapasitasnya semakin menurun ...... Lithium titanate (Li4Ti5O12) could be used as anode electrode in Li-ion battery, replaces graphite in Li-ion battery application. Crystal structure lithium titanate is more stable than graphite, it doesn?t changing during intercalation and de-intercalation process Li+ ions. but along with a high demand for batteries with high capacity, leading to increase the capacity of Li-ion batteries. that can be improved by combining LTO with the silicon material that has a high capacity reached about 4200 mAh/g, but the volume expansion properties of silicon led to collapse and lost its capacity. Therefore nanoscale silicon is used to minimize the effect of their expansion. This research carried out fabrication process li-ion battery with the addition of silicon nano material with variation weight 5%,10% and 15%. First, nano silicon initial material characterization using TEM-EDS and XRD, showed the presence of the element oxygen and SiO phase on Si nano particles. Then charaterized in coin cell types, half cell using Li4Ti5O12 as a cathode and lithium metal as the anode. Furthermore, battery performance tested with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). From EIS testing, the conductivity values descrease along with increasing weight of Si nano particles. The CV showed the highest capacity on the addition of 5% Si nano, reaching 197,09. The CD showed the increasing weight of Si nano, the capacity descrease.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sarah Alya Firnadya
Abstrak :
ABSTRAK
Baterai lithium ion merupakan baterai yang sedang dikembangkan untuk menjadi tempat penyimpanan energi khususnya untuk mobil listrik. Anoda Li4Ti5O12 LTO atau lithium titanat merupakan anoda yang cukup menjanjikan untuk aplikasi ini karena sifat zero-strain yang dimiliki sehingga dapat tahan pada high rate. Namun, kapasitas yang dimiliki LTO masih tergolong rendah. Oleh karena itu LTO perlu dikombinasikan dengan bahan lain yang memiliki kapasitas tinggi seperti Si. Silikon memiliki kapasitas yang sangat tinggi yaitu 4200mAh/g namun volume ekpansinya pun tinggi. Ukuran nano juga dapat membantu meningkatkan kapasitas. Oleh karena itu komposit LTO/nano Si dibuat untuk mendapat anoda dengan kapasitas yang tinggi dan bersifat stabil. Nano Si yang ditambahkan dengan variasi 1 , 5 , dan 10 . Komposit LTO/nano Si dikarakterisasi dengan XRD, SEM-EDX, dan TEM-EDX. Lalu, untuk mengetahui performa baterai, pengujian yang dilakukan adalah EIS, CV, dan CD. Hasil yang didapat adalah Si meningkatkan konduktivitas, namun tidak signifikan. Penambahan Si menghasilkan kapasitas baterai yang lebih besar yaitu 262,54 mAh/g pada LTO-10 Si. Stabilitas dari komposit LTO/nanoSi baik, dibuktikan dengan efisiensi coulomb pada high rate yang mendekati 100 .
ABSTRACT The lithium ion battery is a battery that is being developed to become a repository of energy, particularly for electric cars. Li4Ti5O12 LTO anode or lithium titanate anodes are quite promising for this application because of its zero strain properties so it can withstand the high rate. However, the capacity of LTO is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200mAh g but, it has a high volume of the expansion. Nano size can also help increase the capacity. Therefore composite of LTO nano Si is made to create an anode with a high capacity and also stable. Nano Si is added with a variation of 1 , 5 and 10 . LTO nano Si composite is characterized using XRD, SEM EDX, and TEM EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh g in the LTO 10 Si. Stability of composite LTO nanoSi is good, evidenced by the coulomb efficiency at the high rate of close to 100 .
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66640
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>