Ditemukan 3 dokumen yang sesuai dengan query
wiwin
Abstrak :
ABSTRAK
Kemampuan plasmon yang dapat mengurung cahaya pada dimensi nano telah men-dorong pengembangan riset plasmonik dalam beberapa dekade terakhir ini. Akantetapi, material plasmonik berbasis metal yang ada saat ini masih memiliki nilailosstinggi pada frekuensi optik. Hal ini memotivasi pengembangan material alternatifselain metal untuk plasmonik. Penelitian terbaru yang dilakukan pada tahun 2017menunjukkan bahwa lapisan tipis insulator dari SrNbO3+xyang disintesis dalamtekanan gas oksigen yang tinggi dapat memunculkan beberapa plasmon terkorelasidengan nilailossyang kecil pada daerah cahaya tampak-ultraviolet. Fenomenaini muncul karena adanya pengurungan elektron oleh bidang oksigen tambahanpada lapisan tipis SrNbO3+xtersebut. Pada studi ini, kami memodelkan fenomenatersebut menggunakan model Hubbard satu dimensi termodifikasi dengan jumlahsiteyang terbatas. Metode diagonalisasi eksak digunakan untuk mencari nilai danvektor eigen yang kemudian dipakai untuk menghitung fungsi Green dalam repre-sentasi Lehmann pada koordinat site dan spin. Fungsi Green tersebut digunakanuntuk menghitung konduktivitas optik menggunakan formula Kubo dalam teorirespon linear. Perhitungan dilakukan dengan memvariasikan beberapa parameteryang terkait dengan sukuhopping, repulsi Coulombon-site, repulsi Coulombinter-site, jumlah elektron, jumlahsite, serta melihat efek modifikasi suku energion-sitedan repulsi Coulombinter-sitepada Hamiltonian Hubbard. Terkait hasilyang diperoleh, kami mendiskusikan transisi dari plasmon konvensional menjadiplasmon terkorelasi serta membandingkannya dengan data eksperimen dan modelklasik yang ada.
ABSTRACT
The ability of plasmons to confine light into tiny spatial dimensions has encouragedthe development of plasmonic research in the last few decades. However, theexisting plasmonic materials still suffer from large loss at optical frequencieswhich results in energy dissipation of the collective electrons motion. The searchfor low loss materials is generally done on metals with high free electron density.With regard to this issue, recent research conducted in 2017 has shown thatinsulating SrNbO3+xfilm grown under high oxygen pressure can give rise toseveral correlated plasmons with low loss in visible-ultraviolet range, that cannotbe achieved by metals. This phenomenon arises from the confinement of electronsby additional oxygen planes in the thin film of SrNbO3+x. In this study, wemodel the phenomenon using one-dimensional modified Hubbard model with finitenumber of sites. Exact diagonalization method is used to find the eigenvaluesand eigenvectors which are then utilized to calculate the Green function withLehmann representation in site-spin coordinates. The Green function is used tocalculate optical properties using the Kubo formula in linear response theory. Thecalculation is done by varying a number of parameters related to the hoppingterm, Coulomb on-site and inter-site repulsion term, electrons filling, numberof sites, and by modifying the on-site energy and inter-site coulomb repulsionterm in Hubbard Hamiltonian. From the results, we discuss the transition fromconventional plasmons to correlated plasmons, and compare them with existingexperimental data and classical models.
2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Parmonangan, Andes Rogata
Abstrak :
ABSTRAK
Plasmon, yang secara konvensional dikenal sebagai kuanta dari osilasi plasma elektron pada metal, ditemukan secara non-konvensional melalui sebuah eskperimen yang dilakukan pada material Oksida Strontium Niobate dengan penambahan Oksigen (SrNbO3.4). Plasmon pada eksperimen ini muncul pada rentang frekuensi cahaya tampak hingga ultraviolet, dimana kemunculannya ini disebabkan oleh kurungan yang diakibatkan oleh pembentukan bidang berdimensi nanometer pada material SrNbO3.4 akibat keberadaan oksigen tambahan. Eksperimen ini kemudian memotivasi kami untuk mempelajari pembentukan plasmon non-konvensional di material tersebut dengan cara memodelkan sistem hipotetik yang berupa rantai linear lima situs atom menggunakan model Hubbard 1D di sekitar pengisian kuartal. Model tersebut kemudian dikerjakan dengan menggunakan metode diagonalisasi eksak yang kemudian dilanjutkan dengan mengkonstruksi fungsi Green retardasi melalui representasi Lehmann. Kami tertarik untuk menghitung fungsi respon optik dengan menggunakan formula Kubo dari teori respon linier. Hasil yang kami dapatkan melalui perhitungan tersebut menunjukkan bahwa sinyal plasmonik konvensional dapat dimodifikasi dengan mengikutsertakan aspek interaksi Coulomb inter-site pada perhitungan.
ABSTRACT
Plasmons, which are conventionally known as quanta of electron plasma oscillations in a metal, were discovered unconventionally in an experiment of Strontium Niobate Oxide with oxygen enrichment (SrNbO3.4). Plasmons revealed in this experiment arise in the visible-ultraviolet range due to a confinement created by additional oxygens forming nanometer-spaced planes. This experimental background motivates us to study the formation of unconventional plasmons in the material by modeling a hypothetical system described by five linear chain atomic sites Hubbard 1D model around quarter filling. The model is then solved by Exact Diagonalization method, from which we construct the corresponding retarded Green function via Lehmann representation. Our interest is to calculate the optical response functions using Kubo formula of the linear response theory. Our results show that the conventional plasmonic signals get modified by the presence of on-site Coulomb interactions. In addition, we observe that unconventional plasmons behaving similarly to those found in the experiment, arise when the Coulomb inter-site interaction is applied to the calculation.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Lentara Pundi Syaina
Abstrak :
ABSTRACT
One of the simple models to address quantum many body effects in materials with impurities is Anderson Impurity Model. It describes a system consisting of non interacting conduction electrons having hybridization with a localized orbital with strong electron electron interaction at a particular site. This model has been proven successful to explain the phenomenon of metal insulator transition through Anderson localization. Despite the well understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of a few energy levels of conduction electrons with various number of occupying electrons, starting from zero to the maximum number allowed by the available single orbital states. The resulting energy eigenvalues and eigenstates are then used to define the local single particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self energy of each distribution, then average over all the distributions to obtain the final self energy of the system and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of hybridization parameters, impurity concentrations, and temperatures. We discuss our results in connection with the criteria of the occurrence of metal insulator transition in this system.
ABSTRACT
Salah satu model sederhana yang menunjukkan efek kuantum sistem banyak partikel pada material yang memiliki impuritas adalah Anderson Impurity Model. Model tersebut mendeskripsikan sebuah sistem yang memiliki elektron konduksi yang tidak saling berinteraksi namun mengalami hibridisasi dengan orbital yang terlokalisasi, dimana terjadi interaksi yang cukup kuat antar elektron pada orbital tersebut. Model ini terbukti berhasil menjelaskan fenomena metal-insulator transition melalui Anderson localization. Meskipun secara umum model ini telah dipahami, masih sedikit penjelasan teoretis terkait bagaimana model impuritas ini bergantung terhadap parameter hibridisasi, konsentrasi impuritas, dan suhu. Pada penelitian ini, kami mengusulkan studi teoretik mengenai pengaruh aspek-aspek tersebut terhadap single impurity Anderson model dengan menggunakan metode distributional exact diagonalization. Kami mengkontruksi Hamiltonian model ini dengan distribusi energi elektron konduksi yang acak dengan berbagai variasi jumlah elektron yang mengisi orbital sistem, berawal dari kondisi orbital kosong tidak terisi elektron sama sekali sampai jumlah maksimum yang diperbolehkan. Eigenvalue dan eigenvector yang dihasilkan dari setiap sampling digunakan untuk mendefinisikan fungsi Green orbital impuritas melalui Lehmann representation. Kemudian kami mengekstrak self-energy untuk setiap distribusi dan merata-ratakannya. Self-energy rata-rata yang diperoleh inilah yang diperlukan untuk mengkonstruksi fungsi Green total bagi elektron konduksi maupun elektron impuritas, dimana masing-masing fungsi Green tersebut digunakan untuk menghitung densitas keadaan. Kami mengulangi prosedur ini untuk berbagai variasi nilai parameter hibridisasi, konsentrasi impuritas, dan suhu. Diskusi terkait hasil penelitian yang diperoleh mengacu pada kriteria terjadinya fenomena metal-insulator transition pada sistem ini.
2017
S68367
UI - Skripsi Membership Universitas Indonesia Library