Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Prasepvianto Estu Broto
Abstrak :
ABSTRAK
Indonesia merupakan negara agraris yang sebagian besar wilayahnya terdapat lahan sawah. Daerah sawah yang luas mengakibatkan susahnya melakukan monitoring untuk pemetaan luas dan kondisi sawah. Melalui foto udara, waktu pengambilan citra dapat dilakukan lebih cepat dan sesuai dengan perencanaan. Dalam penelitian ini pesawat LSA LAPAN Surveillance Aircraft milik LAPAN digunakan sebagai wahana untuk melakukan monitoring lahan sawah dengan muatan kamera multispektral. Kamera multispektral yang digunakan mempunyai 3 band yaitu merah, hijau dan inframerah. Hasil citra dari kamera multispektral kemudian diolah untuk membedakan lahan persawahan atau bukan. Uji akurasi dilakukan untuk memvalidasi hasil citra yang telah diproses. Selanjutnya didapatkan hasil pengolahan citra berupa identifikasi lahan pertanian aktif. Dengan memanfaatkan band merah dan inframerah dekat didapatkan Normalized Difference Vegetation Index NDVI yang dapat digunakan untuk mengetahui kualitas dan kesehatan tanaman. Dengan NDVI hasil dari identifikasi lahan pertanian dapat diklasifikasikan lagi berdasarkan nilai kehijauan tanaman. Hasil penelitian ini berupa identifikasi lahan pertanian aktif dengan tingkat kehijauan tanaman untuk mengetahui kualitas tanaman padi dari persawahan.
ABSTRACT
Indonesia is an agricultural country where most of its area is paddy field. Large paddy field areas resulted in the difficulty of monitoring for extensive mapping and paddy field conditions. Using aerial photographs, image acquisition can be completed more quickly and according with the plan. In this study, LSA aircraft LAPAN Surveillance Aircraft belongs to LAPAN used as a vehicle for monitoring agricultural land with a multispectral camera payload. Multispectral cameras used to have three bands of red, green and near infrared. The results of the multispectral images from the camera are then processed to distinguish the rice fields or not. Accuracy test performed to validate the results of the image that has been processed. Furthermore, the image processing results obtained in the form of active agricultural land identification. By utilizing the red and near infrared bands obtained Normalized Difference Vegetation Index NDVI , which can be used to determine the quality and plant health. With NDVI result of the identification of agricultural land can be classified again based on the value of the green plants. The results of this study in the form of identification of active agricultural land with crop greenness levels to determine the quality of paddy rice crops.
2017
T47561
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadhilah Siti Shalihah
Abstrak :
E-learning dalam dunia pendidikan sudah banyak diterapkan untuk meningkatkan mutu pendidikan salah satunya adalah penggunaan e-learning pada pengujian akademis baik ujian pilihan ganda, esai, dan lisan. Proses penilaian jawaban ujian mahasiswa masih secara manual maka dari itu, penilitian membahas pengembangan Sistem Penilaian Ujian Lisan atau SIPENILAI dalam bahasa Jepang dengan menerapkan API google speech recognition dan metode LSA. SIPENILAI merupakan sistem yang dikembangkan oleh Departemen Teknik Elektro yang bertujuan untuk menilai ujian lisan secara otomatis. Speech recognition yang akan diterapkan memakai API google speech recognition yang merupakan API yang digunakan untuk mendeteksi suara yang kemudian diubah menjadi teks. Algoritma LSA merupakan metode yang digunakan untuk menganalisa kemiripan antara kalimat dengan dokumen jawaban dari pengajar. Kata dalam kalimat akan disusun menjadi matriks kemudian diproses dengan SVD (Singular Value Decomposition) dan diukur kemiripan antara kalimat dengan dokumen jawaban menggunakan Frobenius Norm. Dari pengujian yang telah dilakukan SIPENILAI dapat mencapai rata-rata akurasi sebesar 83.64% untuk pengguna fasih dan 76.89% untuk pengguna tidak fasih.
E-learning in the world of education has been widely applied to improve the quality of education one of which is the use of e-learning in academic testing both multiple choice exams, essays, and oral. The process of evaluating student exam answers is still manual and therefore the research, discussing the development of the Oral Examination Assessment System or SIPENILAI in Japanese by implementing Google API speech recognition and LSA methods. SIPENILAI is a system developed by the Department of Electrical Engineering which aims to assess oral examinations automatically. Speech recognition that will be implemented using Google API speech recognition which is an API that is used to detect sound which is then converted into text. LSA algorithm is a method used to analyze the similarity between sentences and the document answers from the teacher. The words in the sentence will be arranged into a matrix and then processed with SVD (Singular Value Decomposition) and measured the similarity between the sentence with the answer document using Frobenius Norm. From testing that has been done, SIPENILAI can reach an average accuracy of 83.64% for fluent users and 76.89% for non-fluent users.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diego Octaria
Abstrak :
Setiap proses pembelajaran memerlukan suatu evaluasi berupa ujian, begitu pula dengan e-learning. Pada proses e-learning jenis ujian yang banyak digunakan adalah jenis ujian pilihan ganda dan isian singkat. Alasannya adalah kemudahan dalam proses penilaian, komputer yang menjadi komponen penting dalam proses e-learning lebih mudah dalam melakukan penilaian ujian pilihan ganda dan isian singkat secara akurat karena jawaban yang ada harus sama baik pilihan maupun kata-katanya, dibandingkan dengan melakukan penilaian jenis ujian esai yang lebih kearah pemahaman bukan hafalan. Padahal jenis ujian pilihan ganda dan isian singkat memiliki banyak kekurangan bila dibandingkan dengan jenis ujian esai. Hal inilah yang mendasari lahirnya penilaian jawaban esai secara otomatis untuk mempersingkat pemeriksaan jawaban esai. Ada banyak metode yang telah dikembangkan untuk penilai jawaban esai secara otomatis, salah satunya adalah Latent Semantic Analysis (LSA). Metode ini mempunyai ciri khas hanya mementingkan kata-kata kunci yang terkandung dalam sebuah kalimat tanpa memperhatikan karakteristik linguistiknya. Pada LSA, kata-kata direpresentasikan dalam sebuah matriks semantik dan kemudian diolah secara matematis menggunakan teknik aljabar linier Singular Value Decomposition (SVD). Implementasi pembobotan pada sistem penilaian esay otomatis dilakukan dengan menggunakan bahasa php, pada percobaan menggunakan jawaban esay dari quiz jaringan komputer. Hasil ujicoba menunjukkan hal-hal yang mempengaruhi kecepatan proses aplikasi adalah banyaknya jawaban mahasiswa dan banyaknya user yang mengakses aplikasi. Dari percobaan juga menunjukkan bahwa skema yang paling mendekati dengan human rater adalah skema 4 yaitu dengan pembobotan lokal jawaban mahasiswa untuk Square Root dan pembobotan dosen Binary dan tidak menggunakan pembobotan global.
Every learning process needs an evaluation in the form of test. At elearning process the test type many used is multiple choice and short answer test type. Its reason is amenity in course of assessment, the computer become the important component in course of e-learning easier in doing assessment of multiple choice and short anwer test in accurate because the answer have to be same exactly, compared to do assessment test of essay type more toward understanding and not memorizing. Though multiple choice and short answer test type have many insuffiencies if compared to the test type esai. These matters constitute the creation of automatically assessment of answer esai to take a short cut inspection of essay answer. There are many methods which have been developed for the automatically essay assessor, one of them is Latent Semantic Analysis (LSA). This Method has the unique method only making account of the key words implied in a sentence regardless of his linguistics characteristic. In LSA, words represented in a semantic matrix and then mathematicaly proceed to usely linear algebra technique Singular Value Decomposition (SVD). Wight implementation at automatically esay assessment system is done by using language php, In experiment the esay answer are from quiz computer network. Result of experiment show the things influence speed of application process is the number of student answers and to the number of user accessing application. Of attempt is also indicate that the scheme very come near with human rater is scheme of 4 that is with local wight [of] student answer to Square Root and lecturer wight Binary and don't use any global wight.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40589
UI - Skripsi Open  Universitas Indonesia Library
cover
Dudi Hermawandi
Abstrak :
Salah satu metode otomasi essay grading adalah essay grading metode LSA. LSA merepresentasikan isi kata dalam matriks dua dimensi yang besar. Bagian pemrosesan penting dari LSA adalah komponen penganalisisan bernama SVD (Singular Value Decomposition) yang mengkompresi informasi yang berkaitan dalam jumlah besar ke dalam ruang yang lebih kecil. Menggunakan teknik aljabar matriks (SVD), hubungan baru antara esai mahasiswa dan esai referensi ditentukan dan dimodifikasi untuk mewakili arti sebenarnya. SIMPLE-O adalah aplikasi penilaian esai otomatis metode LSA yang berbasis web yang dikembangkan di Indonesia. Untuk meningkatkan kualitas penilaian esai maka perlu diterapkan teknik pembobotan. Sebuah metode pembobotan merupakan susunan dari tiga buah pembobotan: pembobotan lokal (local weighting), pembobotan global (global weighting) dan normalisasi (normalization) [1]. Untuk mengimplementasikan pembobotan maka pada SIMPLE-O dilakukan perubahan pada bagian proses memasukan jawaban esai mahasiswa dan proses penilaianya. SIMPLE-OM adalah SIMPLE-O yang telah mengalami perubahan. Pada SIMPLEOM skema pembobotan yang diterapkan adalah skema pembobotan SICBI (SQRTIGFF-COSN-BNRY-IDFB). Berdasarkan hasil pengamatan dan perhitungan dari beberapa skenario pengujian, sistem aplikasi dengan pembobotan SICBI memberikan hasil yang lebih baik daripada sistem aplikasi tanpa pembobotan. Skenario pengujian yang memberikan hasil paling baik (mendekati human rater) adalah skenario yang memiliki jumlah mahasiswa terbanyak yaitu skenario 3 (20 mahasiswa). Pada skenario 3, rata-rata selisih antara penilaian sistem aplikasi dengan human rater adalah 10,9. Penerapan pembobotan akan membuat sistem aplikasi bekerja lebih lama dalam hal penilaian esai. Selain itu, beberapa hal lain yang berpengaruh pada kecepatan proses penilaian esai antara lain banyaknya kata kunci mahasiswa dan jumlah mahasiswa yang mengikui ujian.
One method of automatic essay grading is "LSA Essay Grading Method". LSA represents words contained in a huge bi-dimensional matrix. Main processing part of LSA is analyzing component that called SVD (Singular Value Decomposition) which compress the large-scaled related information into smaller scale. Using matrix algebraic method (SVD), the new relations between student?s essay and the reference essay can be determined and modified in the real meaning. SIMPLE-O is an automatic essay grading application using web-based LSA method which has been developed in Indonesia. To increase essay grading quality, it needed to apply weighting technique. Weighting methods consist of three weighting: local weighting, global weighting, and normalization [1]. To implement the weighting in SIMPLE-O, it needs to make changes in student?s answers and grading process. SIMPLE-OM is a modified SIMPLE-O. In SIMPLEOM, the weighting scheme which is being implemented is SICBI (SQRT-IGFFCOSN-BNRY-IDFD) weighting scheme. According to observation results and calculation from several testing scenario, SICBI weighting application system gives better results than application system without weighting method. The best result (approaching the human rater) is given by the testing method which has the most student participants, that is in third scenario (20 students). In this scenario, the average differences between application system grading and human rater is 10.9. Weighting implementation will make the application system work longer in essay grading. The number of word and the students also affect to the essay grading speed.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40491
UI - Skripsi Open  Universitas Indonesia Library
cover
Vanessa Deviani
Abstrak :
Simple-O merupakan sistem penilaian esai otomatis yang menerapkan algoritma Latent Semantic Analysis (LSA). Simple-O dalam penilaian hasilnya menggunakan metode pembobotan. Sebagai sistem penilaian esai otomatis, tentu saja Simple-O diharapkan agar hasil penilaiannya mirip dengan hasil penilaian secara manual (Human Raters). Metode pembobotan awal yang diterapkan pada Simple-O masih memiliki beberapa kekurangan, oleh karena itu pada skripsi kali ini akan diimplementasikan empat belas metode pembobotan (kombinasi tujuh pembobotan lokal dan dua pembobotan global) pada Simple-O dan hasilnya akan dilakukan analisa agar dapat ditentukan metode pembobotan yang mana yang paling cocok diterapkan di Simple-O. Metode pembobotan biner tanpa bobot lokal sejauh ini memiliki kemiripan yang paling tinggi dengan human raters dengan selisih perbedaan dengan human raters 9.255 poin. ......Simple-O is an automated essay grading system that complies the Latent Semantic Analysis (LSA) algorithm. Simple-O uses word weighting method in the assessment of the results. As an automated essay grading system, the assessment system in Simple-O is supposedly similar with the manual assessment (human raters). The original Simple-O weighting method still have some flaws, therefore, on this thesis will be implemented fourteen word weighting methods (the combination of seven local weightings and two global weightings) and all of the results will be analyzed to determine which weighting method have the best result to be implemented in Simple-O. Binary weighting method so far have the highest similarity with the manual assessment with the differences by 9.255 point.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S797
UI - Skripsi Open  Universitas Indonesia Library
cover
Satrio Wicaksono Prakoso
Abstrak :
ABSTRAK
Skripsi ini membahas pengenalan struktur kalimat pada sistem penilaian esai otomatis Simple-O. Pengenalan struktur kalimat meliputi subjek, predikat, dan objek serta jenis kalimat aktif atau pasif. Proses pengenalan struktur kalimat dilakukan dengan cara mencari kata predikat dari kalimat input. Pencarian kata predikat dilakukan dengan cara memeriksa kata yang mengandung awalan huruf me-, di-, ber-, dan ter-. Setelah didapatkan kata predikat maka dapat ditentukan jenis kalimat dan kalimat dapat dibagi menjadi tiga bagian. Sehingga dapat ditentukan subjek dan objek kalimat sesuai dengan predikat yang terdeteksi. Hasil pengujian menunjukan bahwa pendeteksian kalimat tunggal dengan keterangan subjek dan/atau objek sebesar 63,33%, sedangkan tanpa keterangan subjek dan/atau objek sebesar 90%. Jumlah kata pada kalimat juga mempengaruhi persentase pengenalan kalimat dan waktu proses pengenalan, dimana waktu proses akan semakin lama seiring dengan bertambahnya jumlah kata yang terkandung pada kalimat.
ABSTRACT
This thesis discusses the recognition of sentence structure in automated essay scoring system Simple-O. Recognition of sentence structure covering the subject, predicate, and object as well as the type of active or passive sentences. Sentence structure recognition process is done by searching for the predicate words of the input sentence. Predicate word searches done by checking words that contain the letter prefix me-, di-, ber-, and ter-. After obtained the predicate word, it can be determined the type of sentence and the sentence can be divided into three parts. So the subject and object sentence can be determined according to detected predicate. The test results showed that the detection of a single sentence with a description of the subject and/or object is 63,33%, while without a description of the subject and/or object is 90%. Number of words in the sentence also affects the percentage of sentence recognition and time process of recognition, in which the processing time will be longer as the number of words contained in the sentence increase.
2014
S55829
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ria Yuliana
Abstrak :
Pada skripsi ini akan membahas mengenai pengimplementasi pendeteksian pengulangan kata menggunakan Cosine Similarity, sedangkan untuk melihat makna antar kalimat akan dilakukan pembobotan kalimat yang sebelumnya di lakukan proses parsing, stemming, stopword dan melakukan pemisahan antar kalimat. Metode stemming yang akan digunakan adalah metode stemming Arifin-Setiono, proses stemming digunakan untuk mencari kata dasar dari setiap kata pada jawaban dan kemudian dibandingkan dengan kata yang ada pada database. Jika antar kalimat masing-masing dibandingkan dan memiliki nilai cosine similarity lebih dari 0.5 maka sistem tambahan akan menghapus satu kalimat tersebut. Waktu proses antara sistem SIMPLE-O murni lebih cepat jika dibandingkan dengan SIMPLE-O dengan pendeteksian kata yang berulang antar kalimat dengan selisih waktu 0.22 detik. Korelasi nilai antara SIMPLE-O+Cosine dengan Human Raters adalah yaitu sebesar 0.38 untuk soal nomor satu dan untuk soal nomor dua memiliki nilai korelasi yang bernilai negatif 0.08 , untuk soal tiga 0.13, untuk soal empat 0.65 dan 0.022 untuk soal nomor lima. ...... In this paper will discuss the use of word repetition detection implement Cosine Similarity, while to see the meaning of the sentence will be weighted between sentences previously performed process of parsing , stemming , stopword and separation between sentences . Stemming method to be used is a method of stemming Arifin - Setiono , stemming process used to find root of each word in student answer , and then compared with of the word database . If the inter- sentence and has been compared and have value of cosine similarity more than 0.5 , the additional features on the system will remove a sentence . The time between system processes SIMPLE - O more fast when compared with SIMPLE-O with additional features on the system that will repetitive detection word sentence with a time difference between 0.22 seconds. The correlation value of the Human Raters with the SIMPLE-O + Cosine is 0.383 for the first question, -0.08 for the second question, 0.13 for the third question, 0.65 for the fourth question and 0.02 for the fifth question.
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60130
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siahaan, Vebrianty
Abstrak :
ABSTRAK
Pada skripsi ini akan dibahas mengenai pengaruh dari banyak kata dan rasio panjang jawaban yang dimasukkan oleh mahasiswa terhadap keakuratan penilaian yang diperoleh pada SIMPLE-O. Banyak kata dan rasio panjang jawaban yang dimasukkan adalah salah satu faktor tidak langsung yang mempengaruhi keakuratan penilaian. Banyak kata dan rasio panjang jawaban memberikan peluang terjadinya perulangan kata kunci atau kata bobot sehingga mempengaruhi proses penilaian pada sistem. Semakin banyak kata pada jawaban yang dimasukkan, semakin besar kemungkinan terjadinya perulangan kata kunci atau kata bobot sehingga nilai yang dihasilkanpun akan semakin besar. Sementara rasio panjang jawaban mahasiswa terhadap panjang jawaban referensi tidak memberi pengaruh yang besar terhadap keakuratan penilaian SIMPLE-O. Analisis pengaruh banyak jawaban terhadap keakuratan penilaian pada SIMPLE-O dilakukan dengan menggunakan variabel banyak kata yang berbeda-beda. Terdapat 6 variabel yang digunakan sebagai bahan analisis, yaitu variabel banyak kata jawaban 50 kata, 100 kata, 150 kata, 200 kata, dan 300 kata. Korelasi nilai antara SIMPLE-O dan human rater pada variabel 50 kata adalah 0.1351, untuk variabel 100 kata korelasinya adalah 0.3030, untuk variabel 150 kata korelasinya adalah 0.1861, untuk variabel 200 kata korelasinya adalah 0.1189, untuk variabel 250 kata nilai korelasinya berlawanan arah atau bernilai negatif yaitu -0.1555, dan untuk variabel 300 kata nilai korelasinya adalah sebesar -0.2764. Waktu proses pada variabel 50 kata lebih cepat dibandingkan variabel lainnya yaitu sebesar 0.3654606
ABSTRACT
This paper will discuss about the influence of words number and answer?s length ratio on essay test to the system accuracy in SIMPLE-O. Words number and answer?s length ratio is one of the undirectly factors that affecting the accuracy of the assessment in SIMPLE-O. Word?s number and answer?s length ratio gives the chance of recurrence keywords or weight that affecting the assessment process on the system. The more words is entered, the greater the chances of recurrence keywords or weights so that the resulting value will be even greater. While answer?s length ratio of students to the answer?s length of the reference does not give a great influence on the accuracy of the system valuation. The analyses were performed using variables of different answer?s words number. There are six variables used for analysis, namely 50 words variable, 100 words variable, 150 words variable, 200 words variable and 300 words variable. Correlation values between SIMPLE-O and human rater on 50 words variable is 0.1351, for the 100 words variable correlation is 0.3030, for the 150 words variable correlation is 0.1861, for the 200 words variable correlation is 0.1189, for the 250 words variable correlation is -0.1555, and for the 300 words scenario correlation is -0.2764. The processing time in the 50 words variable is quicker than other scenarios that is equal to 0.3654606
Fakultas Teknik Universitas Indonesia, 2016
S65780
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Zannibua Harisma
Abstrak :
Setiap proses pembelajaran memerlukan suatu evaluasi berupa ujian, begitu pula dengan e- learning. Pada proses e- learning jenis ujian yang banyak digunakan adalah jenis ujian pilihan ganda dan isian singkat. Alasannya adalah kemudahan dalam proses penilaian, komputer yang menjadi komponen penting dalam proses e-learning lebih mudah dalam melakukan penilaian ujian pilihan ganda dan isian singkat secara akurat dibandingkan dengan melakukan penilaian jenis ujian esai. Padahal jenis ujian pilihan ganda dan isian singkat memiliki banyak kekurangan bila dibandingkan dengan jenis ujian esai. Hal inilah yang mendasari dibuatnya sistem penilaian jawaban esai secara otomatis (automated essay grading). Sistem yang dibuat merupakan sistem yang berbasiskan web dengan a lasan kemudahan pengaksesan oleh pihak user dari mana saja dan kapan saja. Dalam hal penilaian metode yang digunakan adalah metode Latent Semantic Analysis (LSA). Metode ini mempunyai ciri khas hanya mementingkan kata-kata kunci yang terkandung dalam sebuah kalimat tanpa memperhatikan karakteristik linguistiknya. Pada LSA, kata-kata direpresentasikan dalam sebuah matriks semantik dan kemudian diolah secara matematis menggunakan teknik aljabar linier Singular Value Decomposition (SVD). Walaupun metode ini relatif sederhana, namun memiliki tingkat korelasi yang cukup tinggi bila dibandingkan dengan penilaian yang dilakukan manusia secara manual. Skripsi ini membahas mengenai kinerja dari sistem penilaian esai otomatis berbasis web dengan menggunakan metode LSA dengan 3 tingkat bobot kata kunci. Pada sistem ini dilakukan pengujian mengenai kecepatan pada waktu memasukkan soal dan jawaban serta pada waktu penghitungan nilai. Pengujian tersebut dilakukan dengan menggunakan bantuan server pada localhost. Pengujian mengenai keakuratan penilaian juga dilakukan dengan cara membandingkan hasil penilaian sistem dengan human rater. Dari hasil pengujian, perbandingan penilaian dengan human rater menunjukkan angka korelasi sebesar 0,777402209 dengan rata-rata selisih nilai untuk setiap soal sebesar 17,36.
Each learning process need an evaluation in form like an exam, so also with elearning. In e-learning process type of exam that often used is multiple choice and short essay. The reason is easiness in asssessment process, computer that became important part in e- learning process is easier to grade a multiple choice and short essay exam accurately compared with an essay exam. Whereas multiple choice and short essay exam have many flaw if we compared it with long essay exam. This was the basic idea of automated essay grading. This system was made based on the web based application, the reason is web based application is easy to be accessed by user anytime from anywhere. Scoring method that is used in this system is Latent Semantic Analysis method (LSA). This method has characteristic to only emphasize keywords in a sentence without paying attention to its linguistic characteristic. In LSA, words is represented in a semantic matrix and then processed mathemathically with Singular Value Decomposition (SVD). Despite of its simpicity, this method have a quite high correlation when compared with assessment of human rater. Performance of web based automated essay grading system by using LSA method with 3 levels weight of keywords is tested here. Testing concerning speed when entering a question and answer to system and when calculating exam score are conducted in this system. Those testing is conducted by using server in localhost. Testing concerning preciseness of its grading is also carried out by comparing result of system?s grading and human rater. From result of this testing, comparison of system?s grading with human rater showed the correlation figure of 0,777402209 with average difference of score is 17,36 for every question.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40467
UI - Skripsi Open  Universitas Indonesia Library
cover
Ashari Nurhidayat
Abstrak :
Ekstraksi topik adalah kegiatan untuk mendapatkan topik dalam kumpulan dokumen berita. Ekstraksi topik memiliki peran yang penting untuk mendapatkan maksud dari keseluruhan dokumen teks tersebut. Metode yang umum digunakan dalam machine learning untuk pencarian topik utama adalah unsupervised learning, dimana topik diekstraksi dari kumpulan dokumen tanpa bergantung pada label dokumen. Salah satu metode yang dapat digunakan untuk mengekstraksi topik dari kumpulan dokumen berita yaitu latent semantic analysis (LSA). LSA mengaplikasikan teknik singular value decomposition (SVD) untuk mendapatkan hubungan kata dengan topik dalam kumpulan dokumen berita. Pada skripsi ini, dibahas mengenai implementasi metode LSA pada kumpulan dokumen dari portal berita online berbahasa Indonesia. Selanjutnya, keluaran metode LSA dibandingkan dengan hasil ekstraksi topik secara manual untuk menunjukkan keberhasilan metode LSA. ......Topic extraction is an activity to get a topic from text document collection. Topic extraction is very important in order to find out the meaning of those whole text document. The general method used in machine learning for finding the main topic is unsupervised learning, where a topic is extracted from the document collection without depending on document labels. One of Methods which can be used for extracting a topic from text document collection is latent semantic analysis (LSA). Furthermore, LSA using LSA to show a relation between words and topic in their organizer document collection. In this skripsi, the implementation of LSA method in documents collection from Indonesian online news portal discussed. Furthermore, LSA method output compared with manual extraction to demonstrate the success of LSA.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S42092
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>