Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Abstrak :
A material study for cathode tube of side window Geiger-Muller detector was carried out. Aim of the study is determine the counting correction factor to the absorpsion gamma radiation, so the type and thickness of materials tube can be sutled....
Artikel Jurnal  Universitas Indonesia Library
cover
Istia Prianti Hidayati
Abstrak :
Microbial Elctrolysis Cell adalah suatu sistem biokimia yang memproduksi gas Hidrogen dari bahan organik yang terkandung dalam air limbah. Produksi hidrogen dapat berkurang karena proton CO2 dan hidrogen membentuk metana dan air yang disebabkan oleh bakteri metanogenik. Katalis AC-Fe/SS dipilih karena karbon aktif memiliki luas permukaan yang tinggi serta aktivitas dan stabilitas Fe yang baik. Metode adsorpsi dan fase inversi digunakan untuk menggabungkan AC-Fe pada SS. Penelitian dilakukan dalam reaktor 100mL MEC selama 258 jam. Hidrogen dianalisis dengan GC-TCD. Pengukuran tegangan dilakukan dengan multimeter dan pertumbuhan bakteri dianalisis dengan spektrofotometer. Fraksi gas hidrogen terbesar adalah 60% dengan AC-Fe/SS dan 0,08% tanpa menggunakan katalis. Nilai densitas optik untuk pertumbuhan mikroorganisme tertinggi adalah 0,611 dengan katalis AC-Fe/SS dan 0,427 tanpa menggunakan katalis. Densitas arus tertinggi adalah 99,11 mA / m2 dengan katalis AC-Fe/SS dan 59,52 mA / m2 tanpa menggunakan katalis. Pemodelan Dudley dilakukan menggunakan Matlab dan menunjukkan bahwa Umaxe adalah 1 /hari dan Qmaxe adalah 4,6 mg-S / mg-Xe / hari memiliki efek pada total mikroorganisme yang mendekati percobaan. ......Microbial Elctrolysis Cell is a biochemical system for producing Hydrogen gas from organic substances contained in wastewater. Hydrogen production can be reduced because CO2 and hydrogen protons form methane and water caused by methanogenic bacteria. The AC-Fe / SS catalyst was chosen because activated carbon had a high surface area and Fe had good activity and stability. The adsorption and phase inversion method were used to combine AC-Fe on SS. The research was carried out in a 100mL MEC reactor for 258 hours. Hydrogen was analyzed by GC-TCD. Voltage measurements was carried out with a multimeter and bacterial growth was analyzed with a spectrophotometer. The largest hydrogen gas fraction was 60% with AC-Fe / SS and 0.08% without using a catalyst. The highest optical density value for microorganism growth was 0.611 with AC-Fe / SS catalyst and 0.427 without using a catalyst. The highest current density was 99.11 mA / m2 with an AC-Fe / SS catalyst and 59.52 mA / m2 without using a catalyst. The Dudley modeling was done using Matlab and showed that Umaxe was 1 day-1 and Qmaxe was 4.6 mg-S / mg-Xe / day had an effect on the total microorganisms approaching the experiment.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Heru Kuntoro Ashadi
Abstrak :
Dengan kemajuan teknologi, peningkatan penggunaan penyimpanan energi yang begerak juga semakin bertambah. Salah satu bahan aktif yang digunakan dalam katoda baterai ion litium adalah LiFePO4. Dalam penelitian ini, telah dilakukan sintesis dan proses pemberian doping Na pada material katoda LiFePO4/C menjadi material komposit Li1-xNaxFePO4/C dengan (x = 0, 0,01, 0,02, 0,03, 0,04 dan 0,05) dilakukan dengan kombinasi proses reaksi kimia basah (wet chemical) dan padatan (solid state) pada temperatur kalsinasi 350oC selama 1 jam proses sintering 750oC selama 4 jam. Karakterisasi morfologi, struktur mikro dan komposisi dilakukan dengan menggunakan difraksi sinar-X (XRD) dan mikroskop elektron yang dilengkapi dengan pemindai komposisi (SEM/EDX), sedangkan karakterisasi elektrokimia dalam bentuk sel koin R2032 dilakukan dengan menggunakan voltametri siklik (CV), spektroskopi impedansi elektrokimia (EIS) dan pengisian dan pengosongan (Charge-Discharge). Hasil XRD menunjukkan bahwa semua sampel sesuai dengan LiFePO4/C standar dengan struktur olivine pada kondisi x = 0, sedangkan hasil SEM menunjukan bahwa ukuran partikel semua sampel adalah berkisar antara sekitar 1 sampai dengan 3 µm. Hasil uji CV menunjukkan bahwa doping Na jelas meningkatkan reversibilitas dan perilaku dinamis interkalasi dan deinterkalasi ion lithium. Hasil EIS menunjukkan bahwa doping Na mengurangi resistensi transfer pada material katoda LiFePO4/C dengan meningkatkan koefisien difusi ion lithium. Dapat disimpulkan dari semua karakteriasi material sampel dan sel koin bahwa doping Na dapat meningkatkan kinerja elektrokimia material katoda dengan hasil yang optimal pada x = 0,02 sampai 0,03. ......With the advancement of technology, there is an increase use of mobile energy storage. One of the active materials used in lithium ion battery cathode is LiFePO4. In this work, synthesis and characterization of Li1-xNaxFePO4/C (x = 0, 0.01, 0.02, 0.03, 0.04 dan 0.05) composite has been carried out. The synthesis was performed via combination of wet chemical reaction processes to obtain FePO4 and continued with the process of mixing through solid state reaction method to form Li1-xNaxFePO4/C. In this work, nominal x ratio of sodium to lithium was varied from 0 to 5 wt.%. The calcination was carried out for 1 hour at 350 °C and continued with sintering at 750 °C for 4 hours under nitrogen environment. Morphological characterization and microstructure observation were performed using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD), respectively. The XRD results showed that the obtained active material has uniformity in comparison to the LiFePO4 standard with olivine structure for x = 0. With the addition of sodium, there is an indication that the peak shifted to the lower at the optimum angle. Observation on the morphology showed that the particle size of the obtained active material ranges from about 1 to 3 µm, whereas analysis on the composition showed consistent results. This is as an indication that the synthesis of Li1-xNaxFePO4/C composite has been carried out successfully. The CV test results show that Na doping increases the reversibility and dynamic behavior of lithium ion intercalation and deintercalation. The EIS results show that Na doping reduces transfer resistance in the LiFePO4/C cathode material by increasing the diffusion coefficient of lithium ions. It can be concluded from all the characteristics of the sample material and coin cell that Na doping can improve the electrochemical performance of the cathode material with optimal results at x = 0.02 to 0.03.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Robbi Fidzikrillah
Abstrak :
Fuel Cell adalah sebuah electrochemical device yang dapat mengkonversi energi kimia menjadi energi listrik. Salah satu jenis fuel cell adalah Direct Methanol Fuel Cell (DMFC). Permasalahan utama pengembangan DMFC adalah lambatnya kinetika elektrokimia di sisi katoda dan anoda yang berbasis logam Platina (Pt). Khusus di sisi katoda, aktivitas reaksi reduksi oksigen / oxygen reduction reaction (ORR) masih rendah dan terjadi methanol crossover. Methanol crossover adalah proses difusi metanol dari anoda, melewati membran menuju katoda sebagai akibat gradien konsentrasi metanol (konsentrasi metanol di anoda lebih tinggi daripada di katoda) dan electro-osmotic drag (pergerakan proton dari anoda ke katoda dengan menarik molekul air akibat medan listrik). Metanol yang berdifusi teradsorb pada katoda, sehingga pada katoda terjadi reaksi reduksi oksigen dan oksidasi metanol secara kontinyu. Mixed potential yang terjadi akibat kedua reaksi tersebut menyebabkan penurunan voltase sel. Untuk meningkatkan kinerja DMFC, disintesis elektrokatalis katoda Pt-Cr/C. Logam Cr bersifat tahan terhadap kehadiran metanol di katoda (high methanol tolerance). Dengan tersubstitusinya sebagian Pt oleh Cr pada alloy Pt-Cr/C diharapkan mampu meminimalisasi oksidasi metanol pada katoda, sehingga pengaruh mixed potential terhadap penurunan voltase sel dapat dikurangi. Selain itu ketika terbentuk alloy PtCr/C, elektrokatalis memiliki oxygen vacancies atau defect yang cukup sehingga dapat memfasilitasi pengikatan dan disosiasi oksigen. Spesi oksigen aktif ini akan meningkatkan aktivitas reaksi reduksi oksigen.. Logam Cr yang digunakan sebagai pensubstitusi Pt adalah logam golongan transisi yang harganya lebih murah dari Pt sehingga komponen biaya elektrokatalis dapat dikurangi.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49596
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prita Sekaringtyas
Abstrak :
Proses sintesis LiFePO 4/V/C dilakukan untuk membuat katoda baterai lithium ion. Sintesis diawali dengan membuat LiFePO4 melalui proses hidrotermal dengan bahan dasar LiOH, NH4H2PO4, dan FeSO4.7H2O. Setelah proses sintesis, LFP kemudian ditambahkan variasi vanadium dan karbon aktif sekam padi. Ketiga bahan dicampur menggunakan ball-miller kemudian dikarakterisasi analisis termal STA untuk menetukan temperatur sintering. Proses sintering dilakukan pada temperatur 850 C selama 4 jam. Hasil sintering kemudian dikarakterisasi dengan difraksi sinar-X XRD dan morfologi permukaan dianalisa dengan menggunakan mikroskop elektron SEM. Hasil karakterisasi dengan XRD menunjukkan terbentuknya fasa LiFePO4/V/C. Hasil SEM menunjukkan perbedaan morfologi penambahan vanadium dan karbon aktif. Proses pembuatan baterai dilakukan dengan bahan-bahan hasil sintesis. Pengujian konduktifitas dilakukan dengan menggunakan EIS. Hasil EIS menunjukkan bahwa dengan penambahan karbon aktif sekam padi memiliki konduktifitas yang lebih besar dibandingkan karbon gula dan carbon black. Hasilnya yaitu karbon aktif sekam padi dapat digunakan sebagai pelapis karbon pada katoda baterai lithium ion. ......Use of carbon pyrolized from rice husk in the synthesis of LiFePO4 V C used as lithoum ion battery cathode has been carried out. The synthesis was begun by syntesizing LiFePO4 LFP via hydrothermal route using the precursors of LiOH, NH4H2PO4, and FeSO4.7H2O. The as synthesized LFP was then added with variations of vanadium and a fix composition of activated carbon using rice husk as the resource of the carbon. These three ingredients were mixed using a ball miller and was characterized using thermal analyzer to determine the transition temperature from which temperature 850 C was obtained. The LiFePO4 V C was characterized using X ray diffraction XRD whereas the surface morphology was analyzed using scanning electron microscope SEM equipped with energy dispersive X ray spectroscopy EDX. XRD results show that the LiFePO4 V C has been formed, whereas SEM results showed a difference in morphology of vanadium and activated carbon addition. The battery were prepared from the as synthesized materials and was tested using electrical impendance spectroscopy EIS. EIS results showed that the materials with addition of activated carbon from the rice husk has greater conductivity than that of pure LFP. This prove that the activated carbon from the rice husk can be used as a cheap carbon resource for developing lithium ion battery cathode.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68448
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wibowo Chandra Pawito
Abstrak :
Telah dilakukan proses sintesis metode hidrotermal untuk membuat katoda LiFePO4 dengan variasi penambahan unsur vanadium dan pelapisan dengan dua jenis sumber karbon. Pada penelitian ini, pembuatan material aktif LiFePO4 diawali dengan pencampuran bahan-bahan dasar LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri. Setelah proses sintesis, dilakukan penambahan unsur vanadium yang berasal dari bubuk H4NO3V sebagai variasi dari material aktif katoda dan dua jenis sumber karbon, yaitu karbon aktif dari bambu dan karbon hitam masing-masing sebanyak 2 wt. Bahan-bahan tersebut dicampur dengan menggunakan ball-mill dan selanjutnya dilakukan karakterisasi analisis termal dengan STA untuk menentukan temperatur sintering. Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 adalah sekitar 639°C. Kemudian dilakukan proses sintering selama 4 jam dan setelahnya dilakukan karakterisasi dengan menggunakan difraksi sinar-X XRD dan mikroskop elektron SEM. Hasil karakterisasi dengan XRD menunjukkan bahwa fasa LiFePO4/V/C terbentuk struktur olivin, sementara hasil SEM LiFePO4/V/C menunjukkan persebaran yang cukup merata serta ukuran partikel yang lebih kecil dan beberapa teraglomerat. Dilanjutkan dengan proses pembuatan baterai dari bahan sintesis dan diuji melalui spektroskopi impedansi EIS untuk menunjukkan konduktivitas. Hasilnya menunjukkan bahwa pelapisan karbon pada material aktif meningkatkan konduktivitas yang cukup tinggi, namun saat penambahan vanadium konduktivitas menurun drastis. ......Synthesis of hydrothermal methods has been made to prepare LiFePO4 cathodes with variations in the addition of vanadium elements and coatings with two types of carbon sources. In this study, the preparation of LiFePO4 beguns with the precursor of LiOH, NH4H2PO4, and FeSO4.7H2O according to stoichiometry. After the synthesized, the addition of vanadium elements from H4NO3V powder as a variation of the cathode active material and two types of carbon sources, the activated carbon from bamboo and carbon black respectively 2 wt. The materials were mixed using a ball mill and subsequently characterized the thermal analysis with STA to determine the sintering temperature. The result shows that LiFePO4 formation temperature is at 639°C. Then sintering process is done for 4 hours and afterwards characterization is done by using X ray diffraction XRD and electron microscope SEM. The result of characterization with XRD shows that LiFePO4 V C phase formed olivine structure, while the SEM result of LiFePO4 V C shows fairly even distribution and smaller particle size and some agglomerated microstructure. The batteries were prepared from the as synthesized materials and was tested using electrochemical impedance spectroscopy EIS to show the conductivity. The results show that carbon coating on the active material increases the high conductivity, while the addition of vanadium conductivity decreases dramatically.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68289
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanna Hertiani
Abstrak :
Green Synthesis nanopartikel Li2O, Mn2O3, dan LiMn2O4 berhasil dilakukan dengan menggunakan ekstrak daun pepaya (Carica Papaya L.). Metabolit sekunder yang ada dalam ekstrak daun berperan sebagai sumber basa untuk menghidrolisis dan capping agent untuk menstabilkan pembentukan nanopartikel. LiMn2O4 yang disintesis menggunakan metode konvensional telah berhasil dilakukan. Spektrofotometri UV-Vis, FTIR, PSA, XRD, SEM-EDX, dan TEM untuk mengkarakterisasi material hasil sintesis. Karakterisasi XRD menunjukan bahwa nanopartikel LiMn2O4 spinel kubik, dengan distribusi ukuran partikel sebesar 58,30 nm melalui karakterisasi PSA dan rata-rata ukuran sebesar 55,91 nm melalui karakterisasi TEM. Lembaran katoda LiMn2O4 dibuat dengan mencampurkan material aktif dengan PVDF dan super P dengan perbandingan 8:1:1 menggunakan pelarut N,N-dimethylacetamide (DMAC) menjadi slurry. Kemudian slurry dilapiskan pada Al foil menjadi sebuah lembaran. Data cyclic voltammetry menunjukkan LiMn2O4 hasil green synthesis memiliki performa elektrokimia yang stabil. Ditunjukkan dari voltammogram yang terbentuk dan kapasitas retensi sebesar 87,28% setelah 50 siklus. Dari pengujian galvanostatic charge-discharge didapatkan kapasitas spesifiknya hanya 63,93 mAH/g dengan efisiensi coulombic sebesar 94,78%
The green synthesis of Li2O, Mn2O3, and LiMn2O4 nanoparticles has been successfully done using papaya leaf extract (Carica Papaya L.). The secondary metabolite in the leaf extract plants a role as base source to hydrolize and capping agent to stabilize nanoparticle formation. The synthesized LiMn2O4 using conventional method was also successfully done. We use, UV-Vis spectrophotometry, FTIR, PSA, XRD, SEM-EDX, and TEM to characterize the synthesized material. XRD characterization shows that the cubic spinel LiMn2O4 nanoparticle with particle size distribution of 58,30 nm through PSA characterization and the average size about 55,906 nm through TEM characterization. LiMn2O4 cathode sheet is made by mixing active material with PVDF and super P with a ratio of 8:1:1 using N.N-dimethylacetamide (DMAC) became slurry. Then slurry was superimposed to Al foil to become a sheet. cyclic voltammetry data shows that synthesized LiMn2O4 has been a stable electrochemical performance. This is shown from the shape of the formed voltammogram and retention capacity of 87,82% after 50 cycles. From galvanostatic charge-discharge test, a specific capacity of 63.93 mAH.g-1 was obtained with a coulombic efficiency of 94.78%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chandra Pratama Wiyaga
Abstrak :
Pengembangan baterai listrik sebagai sumber energi utama untuk electricity-vehicle menjadi fokus utama dalam industri otomotif terkini. Salah satu dari sumber energi listrik yang paling banyak dikembangkan adalah baterai ion lithium. Komponen penting pada Baterai Ion-Lihium yakni katoda merupakan salah satu komponen yang banyak dilakukan pengembangan pada bidang industri, katoda yang paling banyak digunakan pada pengembangan industri baterai ion-lihium adalah LiCoO2 dan NMC 622. NMC material memiliki keuntungan dibandingkan LiCoO2 terutama dalam keseimbangan energy density, power capability, dan cost dari produk. Material NMC juga memiliki kesetimbangan termal yang lebih baik dibandingkan LiCoO2 sehinga lebih safety dalam proses sintesis material. Penelitian kali ini, menggunakan NMC 622 sebagai katoda utama dengan disintesis menggunakan metode solution combustion (SCS) dengan variasi suhu sintering. Metode solution combustion digunakan karena metode ini sederhana dalam pengunaannya, cost yang cenderung murah, dan proses sintesis tidak memakan waktu yang lama. Untuk mendapatkan data penelitian, mengenai performa terbaik pada hasil sisntesis dilakukan variasi suhu sintering pada 3 variasi suhu 700 oC, 800 oC, dan 900 oC. Hasil dari uji SEM-EDS menyatakan bahwa material memiliki distribusi partikel yang baik. Hasil XRD menunjukkan hasil struktur material yang berbentuk hexagonal. NMC 622 800 oC memiliki kapasitas 137.24787 mAh/g, NMC 622 700 oC sebesar 101.56644 mAh/g dan kapasitas NMC 622 900 oC sebesar 66.61218 mAh/g. ...... The development of electric batteries as the main energy source for electricity-vehicles is a major focus in the current automotive industry. One of the most widely developed sources of electrical energy is the lithium-ion battery. An important component in the Ion-Lihium Battery, cathode is one of the components that is widely developed in the industrial field, the cathode that is most widely used in the development of the ion-lihium battery industry is LiCoO2 and NMC 622. NMC material has advantages over LiCoO2 especially in the balance of energy density, power capability, and cost of the product. NMC material also has a better thermal equilibrium than LiCoO2 so that it is more safety in the material synthesis process. This research uses NMC 622 as the main cathode by synthesizing it using the solution combustion (SCS) method with variations in sintering temperature. The solution combustion method is used because this method is simple in its use, the cost tends to be cheap, and the synthesis process does not take a long time. To obtain research data, regarding the best performance in the synthesis results, sintering temperature variations were carried out at 3 temperature variations of 700 oC, 800 oC, and 900 oC. The results of the SEM-EDS test state that the material has a good particle distribution. XRD results show the results of hexagonal material structure. NMC 622 800 oC has a capacity of 137.24787 mAh/g, NMC 622 700 oC of 101.56644 mAh/g and a capacity of NMC 622 900 oC of 66.61218 mAh/g.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiona Angellinnov
Abstrak :
Nickel manganese cobalt (NMC) merupakan salah satu material yang banyak digunakan sebagai katoda baterai ion litium. NMC merupakan perpaduan dari nikel, mangan, dan kobalt dengan rasio tertentu. Dibandingkan jenis lain, NMC 811 (LiNi0,8Mn0,1Co0,1O2) memiliki kapasitas yang tinggi, harga murah, lebih aman karena tidak beracun dan lebih ramah lingkungan. Meskipun demikian, tingginya kadar nikel pada NMC 811 akan berdampak pada penurunan kapasitas, rate capability yang buruk, dan ketidakstabilan termal dan struktur. Salah satu cara untuk menanggulangi hal tersebut yaitu dengan mengoptimalkan metode preparasi, melakukan doping dan coating pada permukaan NMC. Pada penelitian ini digunakan metode solution-combustion synthesis untuk mensintesis NMC 811 dan NMC 811 doping Sn (LiNi0,8Mn0,1Co0,1-xSnxO2 dengan x = 0,01, 0,03, 0,05). Selain itu, juga dilakukan coating dengan karbon aktif dari arang sekam padi dengan variasi 1, 3, 5 wt.% untuk memperoleh LiNi0,8Mn0,1Co0,1O2/C dan LiNi0,8Mn0,1Co0,1-xSnxO2/C. Karakterisasi bahan dilakukan dengan menggunakan infra merah (Fourier transform infrared, FTIR) untuk mengetahui gugus fungsi, difraksi sinar-X (X-ray diffraction, XRD) untuk melihat struktur kristal, mikroskop electron (field emission scanning electron microscopy, FE-SEM) yang dilengkapi energy dispersive X-ray spectroscopy (EDX) untuk melihat topografi permukaan dan komposisinya, dan Brunauer Emmett Teller (BET) untuk melihat luas permukaan dan pori yang terbentuk. Uji performa baterai dengan katoda material aktif dilakukan menggunakan electrochemical impedance spectroscopy(EIS). Hasil penelitian memperlihatkan bahwa variasi Sn paling baik diberikan oleh x=0,03 (LiNi0,8Mn0,1Co0,07Sn0,03O2) dengan konduktivitas sebesar 2,4626 x 10-5 S/cm. Variasi karbon terbaik diberikan oleh konsentrasi 5 wt.% (LiNi0,8Mn0,1Co0,1/C) dengan konduktivitas 31,9024 x 10-5 S/cm. Dibandingkan dengan NMC 811 tanpa modifikasi yang menunjukkan konduktivtas sebesar 1,5951 x 10-5, modifikasi dengan Sn dan karbon aktif memberikan hasil yang lebih baik. ......Nickel manganese cobalt (NMC) is a widely used active material for lithium-ion battery cathode. NMC is a combination of nickel, manganese, and cobalt with a certain ratio. NMC 811 has high capacity, low cost, less toxic and more environmentally friendly compared to the other NMC type. However, its high nickel content leads to capacity decay, poor rate capability, thermal and structural instability. Many efforts have been explored by many investigators to eliminate the drawbacks by optimizing the preparation method, using dopant, and surface coating. In this work, solution-combustion synthesis was used to synthesize NMC 811 and Sn-doped NMC 811 (LiNi0.8Mn0.1Co0.1-xSnxO2 with x = 0.01, 0.03, 0.05). Coating with activated carbon derived from rice husk was also performed with variation 1, 3, 5 wt.%) to obtain LiNi0.8Mn0.1Co0.1O2/C and LiNi0.8Mn0.1Co0.1-xSnxO2/C. Characterization was performed using Fourier transform infrared (FTIR) for the functional groups, X-ray diffraction (XRD) for crystal structure, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FE-SEM/EDX) for surface topography and composition, and Brunauer Emmett Teller (BET) for surface area and pores formation. Performance of the active material as lithium-ion battery cathode was examined using electrochemical impedance spectroscopy (EIS). The results showed that the best performance from Sn doping was obtained from x=0.03 (LiNi0.8Mn0.1Co0.07Sn0.03O2) with the conductivity of 2.4626 x 10-5 S/cm. Meanwhile, coating with activated carbon 5 wt.% (LiNi0.8Mn0.1Co0.1O2/C) provided the highest conductivity of 31.9024 x 10-5 S/cm compared to the other variations. These results are better than the conductivity of NMC 811 with no modification (1.5951 x 10-5 S/cm).
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
His Muhammad Bintang
Abstrak :
Dengan tren perkembangan sumber energi baru terbarukan EBT dan mobil listrik, tuntutan akan piranti penyimpan energi PPE berperforma tinggi tidak dapat dihindari. Peningkatan yang signifikan telah dicapai melalui penelitian mengenai mekanisme penyimpanan energi dan penelitian material baru. Saat ini, PPE dengan kepadatan energi tinggi diwakilkan oleh baterai, dan PPE dengan kepadatan daya tinggi diwakilkan oleh superkapasitor. Namun beberapa aplikasi membutuhkan kepadatan energi dan daya yang tinggi. Solusinya adalah kapasitor ion lithium, yang menggabungkan mekanisme kerja dari baterai dan superkapasitor. Pada penelitian ini, setengah sel kapasitor ion lithium disusun menggunakan elektroda berbahan karbon aktif yang telah tersedia secara komersial dan karbon aktif yang disintesis dari limbah tongkol jagung. Pengujian BET menunjukkan bahwa proses aktivasi dapat meningkatkan luas permukaan spesifik SSA dari karbon tongkol jagung lima kali lebih tinggi, yaitu mencapai 615,448 m /g. Sementara pengujian elektrokimia menunjukkan bahwa semakin tinggi SSA, maka kapasitas spesifik menjadi lebih besar. Dari tiga elektroda yang berbeda, elektroda berbahan karbon aktif komersial menunjukkan performa yang lebih unggul dengan kapasitas spesifik sebesar 91,85 mAh/g.
Nowadays, the development of renewable energy and electric carsmaking the demand for high performance energy storage devices unavoidable. Significant improvements have been achieved through research on energy storage mechanisms and investigation on new materials. At this time, the high energy density energy storage is represented by batteries, and high power density device is represented by supercapacitors. However, some applications require both of high energy and power density. The solution is combining the mechanism of the battery and the supercapacitor as lithium ion capacitor. In this study, half cell lithium ion capacitor were assembled using commercially available activated carbon electrodes and activated carbon electrodes synthesized from corncob waste. The BET test shows that the activation process can increase the specific surface area SSA of corncob carbon up to five times higher, reaching 615,448 m g. While electrochemical characterization shows that the higher the SSA, the higher specific capacity achieved. From three different electrodes, commercial activated carbon electrodes show superior performance with a specific capacity of 91.85 mAh g.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>