Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40 dokumen yang sesuai dengan query
cover
Rizkia Ichty Garniani
Abstrak :
[;Bentonit adalah senyawa yang memiliki struktur berlapis-lapis yang mengandung monmorilonit. Bentonit diaplikasikan sebagai absorben dan katalis. Penggunaan katalis penyangga Ni yang disisipkan pada lapisan bentonit dilakukan dengan pengecilan ukuran partikel Ni menjadi nanopartikel dengan menggunakan reduktor NaBH4 yang menjadikan molekul Ni2+ menjadi Nio. Karena nanopartikel Ni tanpa pilarisasi tidak stabil maka dilakukan pilarisasi pada lapisan-lapisan suatu senyawa alumina silika, yaitu pilarisasi pada bentonit alam Cikajang, Bogor sehingga terbentuklah nanopartikel Ni-bentonit yang lebih stabil. Katalis nanopartikel Ni-bentonit ini merupakan aplikasi dari bentonit yang diaplikasikan pada reaksi hidrogenasi pada senyawa benzena, dimana senyawa yang diklasifikasikan dalam senyawa berbahaya, reaksi hidrogenasi biasanya menggunakan katalis logam atau logam yang tersisipkan kedalam bentonit ataupun zeolit sebagai template, permukaan Ni-bentonit akan terlapisi hidrogen sehingga dapat diaplikasikan sebagai katalis. Reaksi hidrogenasi dilakukan dengan mengalirkan gas H2 pada suhu optimum pada reaktor unggun tetap (Atmospheric Fixed Bed Reactor) dengan 300°C dengan laju alir gas 40 mL/menit sehingga terbentuk katalis penyangga Ni-bentonit. Reaksi hidrogenase akan memutus ikatan rangkap pada benzena sehingga terbentuk senyawa sikloheksana yang merupakan senyawa kimia yang lebih aman juga akan berdampak lebih baik bagi lingkungan. Hasil pengujian menggunakan GC dapat disimpulkan semakin tinggi konsentrasi Ni yang dipilarisasi kedalam bentonit maka semakin banyak persen kadar sikloheksana.
Bentonite is a layered structure containing montmorillonite compounds. The use of bentonite and applied as a buffer, catalyst and absorbent catalyst molecules. The use of catalyst Ni-Bentonite with a diminution of the size of particles Ni be nanoparticle by reductant NaBH4 who made molecular Ni 2+ be Ni. Nanoparticle Ni without pillarization unstable then done pillarization in layers of a compound of alumina silica, so in this research pillarization in layers of bentonite from Cikajang, Bogor and can made nanoparticle Ni-bentonite so than more stable. Catalyst nanoparticle Ni-bentonite is one of the application of bentonite to be applied on bezene compounds on hydrgenation reaction, when the compound is classified in the harmful compounds, hydrogenation reaction ussually use metal catalyst or metal which insert into the bentonite or zeolite as a template, the surface of Ni-bentonite and hydrogen will paved so it can be applied as catalyst for hydrogenation reaction. Hydrogenation reactions performed with H2 gas flow at optimum temperature in Atmospheric Fix Bed Reactor with 300°C with gas flow rate 40 mL/minute so formed Ni-bentonite for buffer catalyst. This will used fordisconnect the hydrogenation reaction of double bond in benzene is formed so that the compound is a chemical compound of cyclohexene safer will also have an impact is better for the environment. The test result using GC can be concluded the higher the concentration of Ni pillarization into the bentonite the more percent levels cyclohexane formed., Bentonit adalah senyawa yang memiliki struktur berlapis-lapis yang mengandung monmorilonit. Bentonit diaplikasikan sebagai absorben dan katalis. Penggunaan katalis penyangga Ni yang disisipkan pada lapisan bentonit dilakukan dengan pengecilan ukuran partikel Ni menjadi nanopartikel dengan menggunakan reduktor NaBH4 yang menjadikan molekul Ni2+ menjadi Nio. Karena nanopartikel Ni tanpa pilarisasi tidak stabil maka dilakukan pilarisasi pada lapisan-lapisan suatu senyawa alumina silika, yaitu pilarisasi pada bentonit alam Cikajang, Bogor sehingga terbentuklah nanopartikel Ni-bentonit yang lebih stabil. Katalis nanopartikel Ni-bentonit ini merupakan aplikasi dari bentonit yang diaplikasikan pada reaksi hidrogenasi pada senyawa benzena, dimana senyawa yang diklasifikasikan dalam senyawa berbahaya, reaksi hidrogenasi biasanya menggunakan katalis logam atau logam yang tersisipkan kedalam bentonit ataupun zeolit sebagai template, permukaan Ni-bentonit akan terlapisi hidrogen sehingga dapat diaplikasikan sebagai katalis. Reaksi hidrogenasi dilakukan dengan mengalirkan gas H2 pada suhu optimum pada reaktor unggun tetap (Atmospheric Fixed Bed Reactor) dengan 300°C dengan laju alir gas 40 mL/menit sehingga terbentuk katalis penyangga Ni-bentonit. Reaksi hidrogenase akan memutus ikatan rangkap pada benzena sehingga terbentuk senyawa sikloheksana yang merupakan senyawa kimia yang lebih aman juga akan berdampak lebih baik bagi lingkungan. Hasil pengujian menggunakan GC dapat disimpulkan semakin tinggi konsentrasi Ni yang dipilarisasi kedalam bentonit maka semakin banyak persen kadar sikloheksana.
Bentonite is a layered structure containing montmorillonite compounds. The use of bentonite and applied as a buffer, catalyst and absorbent catalyst molecules. The use of catalyst Ni-Bentonite with a diminution of the size of particles Ni be nanoparticle by reductant NaBH4 who made molecular Ni 2+ be Ni. Nanoparticle Ni without pillarization unstable then done pillarization in layers of a compound of alumina silica, so in this research pillarization in layers of bentonite from Cikajang, Bogor and can made nanoparticle Ni-bentonite so than more stable. Catalyst nanoparticle Ni-bentonite is one of the application of bentonite to be applied on bezene compounds on hydrgenation reaction, when the compound is classified in the harmful compounds, hydrogenation reaction ussually use metal catalyst or metal which insert into the bentonite or zeolite as a template, the surface of Ni-bentonite and hydrogen will paved so it can be applied as catalyst for hydrogenation reaction. Hydrogenation reactions performed with H2 gas flow at optimum temperature in Atmospheric Fix Bed Reactor with 300°C with gas flow rate 40 mL/minute so formed Ni-bentonite for buffer catalyst. This will used fordisconnect the hydrogenation reaction of double bond in benzene is formed so that the compound is a chemical compound of cyclohexene safer will also have an impact is better for the environment. The test result using GC can be concluded the higher the concentration of Ni pillarization into the bentonite the more percent levels cyclohexane formed.]
Universitas Indonesia, 2014
S58083
UI - Skripsi Membership  Universitas Indonesia Library
cover
Creyghton, Edward Julius
Delft: Delft University Press, 1996
665.533 CRE n (1)
Buku Teks  Universitas Indonesia Library
cover
Pasaribu, Toni
Abstrak :
Tingginya kandungan CO2 yang terdapat pada sumur pengeboran merupakan masalah pada proses selanjutnya dan juga berdampak pada lingkungan. Alternatif untuk mengatasi permasalahan tersebut adalah dengan mengkonversi CO2 menjadi metanol.

Metanol merupakan salah satu produk kimia yang dalam jumlah besar digunakan sebagai bahan baku pada bermacam industri karena dapat direaksikan menjadi barbagai macam produk kimia lainnya seperti formaldehid, klorometana, asam asetat. Bahkan metanol berperan penting menjadi bahan bakar yang dapat bersaing dengan bahan bakar lainnya yang sudah ada.

Di dalam penelitian ini digunakan aditif Ga2O3 yang terbukti dapat memperluas permukaan katalis sehingga konversi yang dihasilkan meningkat dan juga berpengaruh dalam mengurangi energi aktivasi desorpsi yang diketahui setelah dilakukan uji TPD. Aditif Ga juga terbukti mempunyai konversi CO2 tertinggi dibandingkan dengan katalis yang berbasis CuO/ZnO/Al2O3 yang dibuat sebagai katalis pembanding.
Depok: Fakultas Teknik Universitas Indonesia, 2002
T5732
UI - Tesis Membership  Universitas Indonesia Library
cover
Arif Rakhmawan
Abstrak :
Studi Kinetika reaksi hidrogenasi C02 menjadi metanol dengan basis katalis oksida Iogam Cu da.n campuran lainnya sudah banyak dilakukan oleh para peneliti sebelumnya. Keanekaragaman Percobaan yang telah dilakukan menghasilkan berbagai jenis mekanisme reaksi dan persamaan kinetika yang bervariasi. Pada penelitian kali ini katalis yang digunakan adalah CuO/Zn0/A1103/Cr1O3 dengan luas permukaan katalis sebesar 25 m2/gr. Untuk mencegah terjadinya difusi intemal dan difusi ekstemal pada pengambilan data kinetika, maka dilakukan percobaan pendahuluan menggunakan diameter katalis berkisar antara 0,125 - 0,25 mm dan laju alir umpan di atas 100 ml/menit. Penentuan persarnaan laju reaksi dilakukan dengan analisis kinetika adsorpsi isotermal berdasarkan asumsi mekanisme reaksi Coterorzm, sehingga diperoleh persamaan laju pembentukkan metanol adalah sebagai berikut : rM = (0,3075)Pco2Ph2 / 1 + 0.5516Pco2 - 1,18417Pco2Ph2
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49224
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riswijanto
Abstrak :
Kunyit merupakan salah satu tanaman rempah yang banyak terdapat di Indonesia. Kunyit dikenal karena memiliki banyak manfaat, diantaranya adalah sebagai zat warna, bumbu masak dan juga obat. Banyaknya senyawa antioksidan sintetis, telapi penggunaannya masih dibatasi karena beberapa antioksidan tersebut bersifat karsinogenik. Pada penelitian ini dilakukan isolasi kurkumin dari rimpang kunyit dengan menggunakan soxlet dan pelarut yang digunakan adalah etanol. Kemudian dilakukan hidrogenasi terhadap kurkumin tersebut {kurkumin merupakan salah satu komponen dalam kunyit yang memberikan wama kuning dan juga memiliki aktivitas antioksidan) untuk menghilangkan wama kuning pada kurkumin, dilakukan Hidrogenasi melalui 2 tahapan, yaitu : reduksi dengan NaBH< dan Oksidasi dengan reagen Cromat. Kurkumin dan kurkumin terhidrogenasi ini kemudian diuji aktivitas antioksidannya dengan menggunakan metode TLC-Fluoresence. Hasil yang didapatkan dari percobaan ini adalah kurkumin sebanyak 0,4810 gram (1,3%) dan hasil hidrogenasi sebanyak 0,1170 gram (31,45%). Dari uji aktivitas antioksidan diketahui bahwa kurkumin terhidrogenasi memiliki aktivitas antioksidan diantara kurkumin dan tokoferol. Dengan waktu induksi kurkumin, kurkumin terhidrogenasi, dan tokoferol secara berurutan adalah sebagai berikut: 105,120,dan> 120 menit.
2005
SAIN-9-3-2004-25
Artikel Jurnal  Universitas Indonesia Library
cover
Adi Cifriadi
Abstrak :
Oxidation resistance and thermal stability of natural rubber (NR) can be improved by diimide transfer hydrogenation in the latex phase. In this research, non-catalytic diimide transfer hydrogenation of concentrated NR latex was accomplished at various proportions of hydrazine hydrate/hydrogen peroxide. The system was stabilized with the addition of sodium hydroxide. Hydrogenated natural rubber (HNR) was characterized by Fourier Transform Infra Red analysis and degree of hydrogenation. The possibility of side reactions during hydrogenation was also studied by analyzing the gel content and particle size distribution of HNR. It is known that the highest degree of hydrogenation is obtained from the addition of 2 phr hydrazine hydrate and 3 phr hydrogen peroxide at 70oC for a 5-hour diimide transfer hydrogenation of concentrated natural rubber latex, preserved with 1 phr of sodium hydroxide. The higher concentration of hydrogen peroxide trigger crosslink reaction of non-rubber constituent, and depolymerization of HNR molecular chains, were shown by the increased gel content and reduction of HNR particle size distribution, respectively.
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:3 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Didier Nsabimana
Abstrak :
ABSTRAK
Biodiesel atau Fatty Acid Methyl Ester (FAME) mendapatkan terlalu banyak perhatian karena penurunan cadangan minyak di seluruh dunia dan masalah perubahan iklim. Meskipun biodiesel memiliki banyak manfaat dibandingkan minyak diesel, biodiesel masih memiliki masalah stabilitas oksidasi dan sifat aliran dingin yang membatasi penerapannya. Jadi, untuk mengurangi masalah ini, kita perlu memutakhirkan FAME kita dengan menghidrogenasi sebagiannya. Dalam penelitian ini biodiesel dengan komposisi 95,3% metil linoleat (C18:2) dan 4,7% metil oleat (C18:1) dicampur dengan pelarut n-heptana dengan perbandingan 20% sampai 80% dan dihidrogenasi sebagian dalam reaktor trickle bed menggunakan Ni/Al2O3 sebagai katalis. Penelitian ini dilakukan dengan menggunakan reaktor trickle bed yang ada, sebelum memulai eksperimen reaktor trickle bed dimodifikasi; kami memasang tungku kedua di unggun katalis, ukuran katalis adalah 0,7-0,6 mm, serpihan stainless-steel digunakan untuk pasir silika di bagian pemanas untuk meningkatkan laju perpindahan panas. Reaktor trickle bed yang digunakan memiliki diameter 2,05 cm dan tinggi total 37 cm, unggun katalis memiliki tinggi 24 cm sedangkan bagian pemanas memiliki tinggi 11 cm. Itu dioperasikan pada tekanan 7 bar dan suhu 135 oC, 160 °C dan 185 °C. Pada suhu 135 oC ada 99,21% konversi metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 160 °C ada konversi 98,42% dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 185 °C ada konversi lengkap (100%) dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada 135 oC percobaan menghasilkan H-FAME dengan jumlah C18: 0 yang lebih tinggi yaitu 57,65% dari C18:0 dan 39,4% dari C18:1, pada 160 °C percobaan menghasilkan H-FAME dengan komposisi yang hampir sama yaitu C18:0 dan C18:1 yaitu 49,1% dari C18:0 dan 46,85% dari C18:1 sedangkan pada 185 °C percobaan menghasilkan H-FAME dengan komposisi yang lebih tinggi dari C18:1 yaitu 42,15% dari C18:0 dan 53,9% dari C18:1.
ABSTRACT
Biodiesel or Fatty Acid Methyl Ester (FAME) is gaining too much attention due to the decline of oil deposits worldwide and the climate change concerns. Although biodiesel has many benefits over petroleum diesel it still has the problem of oxidation stability and cold flow properties which limit its application. So, in order to mitigate these problems, we need to upgrade our FAME by partially hydrogenating it. In this research the biodiesel with the composition of 95.3 % methyl linoleate (C18:2) and 4.7 % methyl oleate (C18:1) was mixed with n-heptane as solvent to the ratio of 20% to 80% and partially hydrogenated in the trickle bed reactor using Ni/Al2O3 as a catalyst. This research was conducted using the existing trickle bed reactor so, before starting the experiments the trickle bed reactor was modified; we installed a second furnace at catalyst bed, the size of catalyst was 0.7-0.6 mm, stainless-steel flakes were used instead of silica sand in the heating section in order to increase the heat transfer rate. The trickle bed reactor used had the diameter of 2.05 cm and a total height of 37 cm, the catalyst bed had a height of 24 cm while the heating section had a height of 11 cm. It was operated at a pressure of 7 bar and temperatures of 135 °C, 160 °C and 185 °C. At a temperature of 135 °C there was 99.21% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 160 °C there was 98.42% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 185 oC there was complete conversion (100%) of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At 135 °C the experiment yielded H-FAME with higher amount of C18:0 i.e 57.65% of C18:0 and 39.4% of C18:1, at 160 °C the experiment yielded H-FAME with almost equal composition of C18:0 and C18:1 i.e 49.1% of C18:0 and 46.85% of C18:1 while at 185 °C the experiment yielded the H-FAME with higher composition of C18:1 i.e 42.15% of C18:0 and 53.9% of C18:1.
2019
T55071
UI - Tesis Membership  Universitas Indonesia Library
cover
Tri Martanto
Abstrak :
Gas emisi CO2 dari industri gas berkontribusi terhadap pemanasan global sehingga perlu dikurangi atau diolah lebih lanjut. Salah satu cara pengolahan lanjutan CO2 dari gas industri adalah melalui pemanfaatan menjadi bahan baku untuk bahan kimia lain. Penelitian ini dimaksudkan untuk mengevaluasi CO2 menjadi methanol melalui proses hidrogenasi yang dilakukan lewat evaluasi tekno-ekonomi. Sumber CO2 berasal dari beberapa lapangan gas di Indonesia yaitu lapangan Jawa Timur, lapangan Sulawesi Tengah, lapangan Jawa Tengah dan lapangan Jawa Barat. Sumber hidrogen berasal dari elektrolisis air menggunakan solar PV yang dilengkapi dengan baterai sebagai sumber listrik. Simulasi proses dilakukan dengan menggunakan software Aspen HYSYS V.12 dan Aspen Plus V.12. Evaluasi teknis dilakukan melalui perhitungan konsumsi massa CO2, konversi CO2 dan luas area PV yang dibutuhkan per unit produk methanol. Evaluasi ekonomi dilakukan melalui perhitungan levelized cost of process. Aspek lingkungan dievaluasi dengan menggunakan life cycle assessment. Hasil penelitian menunjukkan nilai konsumsi CO2 dari lapangan gas processing facility Jawa Timur, Sulawesi Tengah, Jawa Tengah dan Jawa Barat berada di antara rentang 1,40 – 1,59 ton CO2/ ton MeOH, konversi CO2 berada di rentang 93,29% - 98,83% dan luas PV yang diperlukan berada di rentang 28,52 – 38,15 ribu m2/ ton MeOH. Emisi CO2 berada di rentang -0,201 dan -0,561 kg-CO2eq / kg-MeOH. Biaya produksi hidrogen untuk gas processing facility Jawa Timur, Sulawesi Tengah, Jawa Tengah dan Jawa Barat berturut-turut adalah 3,1, 8,79, 5,42 dan 7,70 USD/ kg H2. Biaya produksi methanol untuk gas processing facility Jawa Timur, Sulawesi Tengah, Jawa Tengah dan Jawa Barat berturut-turut adalah 562,48, 1.960,87, 1.196,21 dan 1.344,88 USD/ ton methanol. Jika dibandingkan dengan sistem PV-Baterai, PV-Grid akan memberikan nilai LCOH dan LCOM lebih rendah tetapi PV-Grid menghasilkan nilai LCA positif artinya ada emisi CO2 yang dibuang ke lingkungan. ......One of the emission CO2 source is coming from outlet gas industry. The CO2 emission contributes to global warming then it should be diminished or processed further. One of the ways that CO2 from the gas industry is utilized by using it as a raw material to create other chemical or low carbon chemical. This study intends to examine the techno-economic and environmental aspect of CO2 hydrogenation to blue methanol with CO2 source from gas fields East Java, Central Sulawesi, Central Java, and West Java. Using solar PV and batteries as power sources, hydrogen is produced from water electrolysis. Using Aspen HYSYS V.12 and Aspen Plus V.12, the process system was simulated. CO2 mass consumption, CO2 conversion, and the required PV area were used in the technical evaluation. The economic evaluation was performed using a levelized cost of process. The environmental aspect was evaluated using life cycle assessment. The result shows that CO2 mass consumption of gas processing facility East Java, Central Sulawesi, Central Java and West Java were in the range between 1.40 – 1.59 ton-CO2/ ton-MeOH range, CO2 conversion were in the range between 93.29% - 98.83% and PV area required in the range between 28.52 – 38.15 ribu m2/ ton MeOH. CO2 emission were in the range between -0.201 and -0.561 kg-CO2eq / kg-MeOH. The hydrogen production cost for gas field in East Java, Central Sulawesi, Central Java and West Java were 3.10, 8.79, 5.42 and 7.70 USD/kg H2, respectively The methanol production cost for gas field in East Java, Central Sulawesi, Central Java and West Java 562.48, 1,960.87, 1,196.21 and 1,344.88 USD/ton-MeOH, respectively. Compared with PV-Battery System, PV-Grid System has lower LCOH and LCOM value but the system has positive LCA which means any CO2 emissions to environment.
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Devi Irmavianti
Abstrak :
ABSTRAK
Nanostruktur logam mulia menunjukkan potensi yang menjanjikan sebagai katalis heterogen karena aktivitas katalitiknya yang tinggi diperlukan untuk industri kimia. Perkembangan nanosains dan nanoteknologi yang luar biasa membawa kemajuan besar dalam mengatur morfologi dan struktur partikel logam untuk meningkatkan selektivitas dan aktivitas katalitik. Di sini, kami mempelajari penggunaan mesopartikel Au sebagai katalis hidrogenasi aseton menjadi isopropanol. Au disintesis dalam satu langkah dalam larutan berbasis air dan bebas surfaktan menggunakan HAuCl4.3H2O, AgNO3, HCl, ascorbic acid, asam asetat dan chitosan. Morfologi mesopartikel Au disesuaikan dengan mengontrol penambahan AgNO3 sebanyak 0, 40 dan 60 L. Mesopartikel Au tanpa penambahan AgNO3 terbentuk gold sticky balls sedangkan dengan penambahan AgNO3 terbentuk gold mesoflowers AuMFs . Hasil karakterisasi menggunakan FESEM, TEM, HRTEM, XRD dan UV-Vis NIR menunjukkan bahwa kehadiran AgNO3 dapat memodifikasi morfologi, luas permukaan dan kristalinitas AuMFs yang berkaitan dengan aktivitas katalitiknya. Efisiensi konversi aseton menjadi isopropanol di bawah radiasi gelombang mikro dievaluasi melalui pita absorbansi optik aseton pada panjang gelombang 265 nm dan hasilnya menunjukkan bahwa kehadiran AuMFs dengan penambahan 40 L AgNO3 menghasilkan efisiensi konversi tertinggi yaitu 71,07 dalam waktu 200 detik.
ABSTRACT
Noble metal nanostructures show a promising potential as the heterogeneous catalysts due to their high catalytic activity needed for the chemical industry. Tremendous development of nanoscience and nanotechnology bring huge advances in controlling the morphology and structure of metal nanoparticles for enhancing the selectivity and catalytic activity. Here, we study the use of gold mesoparticle as a catalyst for hydrogenation of acetone to isopropanol. Au was synthesized in one step in water based solution and surfactant free using HAuCl4 3H2O, AgNO3, HCl, ascorbic acid, acetic acid and chitosan. The morphology of gold mesoparticle was adjusted by controlling the addition of AgNO3 in 0, 40 and 60 L. Gold mesoparticle without the addition of AgNO3 formed gold sticky balls while with the addition of AgNO3 formed gold mesoflowers AuMFs . The characterization results using FESEM, TEM, HRTEM and XRD showed that the presence of AgNO3 can modify the morphology, surface area and crystallinity of AuMFs that related to its catalytic activity. The conversion efficiency of acetone to isopropanol under microwave radiation was evaluated through the characteristic optical absorbance band of acetone at a wavelength of 265 nm and the results show that the presence of AuMFs with the addition of 40 L AgNO3 shows the highest conversion efficiency of 71,07 within 200 seconds.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilham Faturachman
Abstrak :
ABSTRAK
Bahan bakar fosil yang menipis menjadi permasalahan energi saat ini. Hal tersebut meningkatkan pengembangan sumber energi terbarukan yang berkelanjutan dan bersifat ramah lingkungan. Bio-oil merupakan sumber energi berkelanjutan yang dihasilkan dari proses fast pyrolysis material organik serta material lain yang berpotensi sebagai sumber bio-oil, seperti senyawa guaiacol yang berasal dari bio-polimer lignin. Pada penelitian ini senyawa guaiacol digunakan sebagai senyawa model bio-oil, yang dikonversi melalui reaksi hidrodeoksigenasi HDO dengan metode catalytic transfer hydrogen untuk mengurangi kandungan oksigen serta mereduksi ikatan rangkap ? pada cincin aromatisnya. Reaksi HDO pada senyawa guaiacol dilakukan dengan menggunakan katalis heterogen Pd/TiO2 dan katalis bimetal M-Pd/TiO2 Co, Mo, dan Ni, serta pelarut 2-propanol sebagai sumber hidrogen. Variasi logam transisi pada katalis bimetal dilakukan untuk mengetahui pengaruh masing-masing logam terhadap aktivitas katalis Pd/TiO2. Preparasi katalis dilakukan dengan metode impregnasi kering atau incipient wetness dengan prekursor berupa: 1 garam PdCl2; 2 senyawa garam nitrat Co dan Ni; 3 garam ammonium molibdenum dan 4 penyangga Titania TiO2 P-25. Katalis hasil preparasi dianalisis menggunakan, TEM dan H2-TPR. Reaksi dari masing-masing katalis dilakukan menggunakan batch reactor pada suhu 250 C selama 1 jam dengan tekanan gas He sebesar 30 bar. Produk reaksi kemudian dianalisis menggunakan GC-FID, untuk menentukan persen konversi dari substrat berupa guaiacol. Katalis Ni-Pd/TiO2 menunjukan aktivitas yang tinggi terhadap reaksi HDO, dengan persen konversi guaiacol sebesar 31,21, serta persen konversi 2-propanol sebesar 16,26. Katalis ini kemudian direaksikan tanpa hadirnya pelarut 2-propanol, untuk melihat pengaruh 2-propanol sebagai sumber hidrogen. Rendahnya persen konversi sebesar 11,53 , menunjukan 2-propanol berperan dalam reaksi HDO sebagai penyedia hidrogen.
ABSTRACT
The depletion of fossil fuel has become current energy issue that has been an attention of the development of renewable energy which sustainable and environmental friendly. Bio oil is a sustainable energy that produced from pyrolysis process of organic materials such as guaiacol compound derived from lignin bio polymers. In this study, guaiacol upgrading was used as a bio oil model compound in hydrodeoxygenation HDO reaction with Catalytic Transfer Hydrogen CTH by reducing oxygen content and double bond in the aromatic ring. Hydrodeoxygenation reaction of guaiacol was conducted by using heterogenous monometallic Pd TiO2 and bimetallic M Pd TiO2 M Co, Mo, and Ni catalysts, with 2 propanol as a hydrogen source. The addition of various transition metals to the bimetallic catalyst was performed to determine the effect of each metal on the activity of Pd TiO2 catalyst. The catalysts were synthesized by dry impregnation or incipient wetness method with precursors 1 PdCl2 salt 2 Co and Ni nitrate salt 3 ammonium moybdenum salt, and 4 supported catalyst titania TiO2 P 25. The prepared catalysts were characterized using TEM and H2 TPR. The HDO reaction of each catayst was carried out using a batch reactor at 250 C for 1 hour with 30 bar pressure of He gas. The reaction products were analyzed by GC FID to determine the conversion of guaiacol. The result showed that Ni Pd TiO2 catalyst exhibited a high activity of HDO reaction with conversion of guaiacol 32,21 and 16,26 for 2 propanol conversion percentage. This catalyst was then reacted with the same condition but without the presence of 2 propanol to evaluate the effect of alcohol solvent addition as the source of hydrogen. The low conversion percentage of guaiacol compound 11.53 showed that 2 propanol plays an important role as hydrogen source during the HDO reaction.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>