Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Talitha Octaviani
"ABSTRAK
Pemeriksaan kesehatan dalam konteks ini adalah salah satunya untuk mencegah penyakit serebrovaskular, kondisi ini dapat dipahami sebagai salah satu kondisi yang memungkinkan terjadinya kedatangan kembali dari pasien selain bertujuan untuk melakukan pengobatan atau melakukan pencegahan dari penyakit ini. Data pemeriksaan kesehatan memberikan informasi yang dibutuhkan untuk membuat prediksi yang akurat dari kedatangan kembali dari pasien dengan diagnosis kondisi pasien tersebut. Kondisi pasien yang cocok dengan kriteria diprediksi seperti kriteria yang terpreiksi untuk melakukan kedatangan kembali dan jika aturan tersebut memiliki skor ABD maka pasien diindikasikan sebagai rentan terhadap penyakit serebrovaskular yang akan memiliki kesempatan lebih tinggi untuk kembali ke rumah sakit untuk melakukan pemeriksaan atau untuk mencegah penyakit atau bahkan melakukan pengobatan untuk penyakit serebrovaskular. Metode pohon keputusan merupakan salah satu pendekatan Data Mining yang mampu menghasilkan pohon keputusan yang dapat dikonversi untuk menghasilkan aturan yang komprehensif. Dalam menghasilkan aturan, masalah yang terjadi adalah dengan banyaknya atribut yang digunakan maka aturan yang dihasilkan akan lebih kompleks. Dalam penelitian ini, pendekatan metaheuristik diterapkan untuk memaksimalkan efisiensi aturan yang dihasilkan. Metode yang digunakan adalah Particle Swarm Optimization (PSO).

ABSTRACT
Preventive medical check-ups in this context is preventing the cerebrovascular disease, could be understood as one of the condition that enables the re-coming of the examinees besides doing the treatment for the disease. Establishing examinee’s diagnoses often determine the recommendation made to the examinees. The health examination data provides the information needed to make an accurate prediction of the re-coming of the examinee with diagnosis for the examinee’s condition. The condition of the examinee that match the criteria is predicted as do the re-coming and if the rule has the ABD score the examinee indicated as vulnerable to cerebrovascular disease which will have higher chance to come back to the hospital whether to do another checkup for preventing the disease or even doing the treatment for the disease. Decision tree method is one of Data Mining approach that capable to generate decision tree that can be converted to produce comprehensive rules. In generating the rules, the problem occurred is more attribute used more complex the rules would be. In this research, a metaheuristic approach ;"
2015
T44693
UI - Tesis Membership  Universitas Indonesia Library
cover
Oktavia Ika Putri
"[ABSTRAK
Pemeriksaan kesehatan secara umum merupakan bagian yang umum dari perawatan kesehatan di beberapa negara. Jumlah permintaan layanan kesehatan di Taiwan mengalami peningkatan selama sepuluh tahun terakhir. Kenaikan permintaan tersebut didorong oleh beberapa faktor, termasuk populasi yang semakin menua, dan peningkatan jumlah kasus penyakit kronis. Fluktuasi jumlah kedatangan peserta tes kesehatan yang tidak menentu, membuat rumah sakit sulit untuk memberikan pelayanan yang memuaskan. Rumah sakit perlu membuat strategi perencanaan, seperti manajemen kesehatan untuk menangani masalah tersebut dengan cara memprediksi kedatangan peserta uji kesehatan. Aplikasi data mining dalam perawatan kesehatan adalah pembuktian bahwa data mining dapat memberikan informasi yang sangat berguna untuk semua pihak yang terlibat dalam industri kesehatan, seperti meningkatkan kualitas pelayanan rumah sakit. Penelitian ini menggunakan pengelompokan dan aturan asosiasi untuk mengetahui pola dari data pemeriksaan penyakit cerebrovascular, dengan tujuan memprediksi kedatangan kembali peserta tes kesetahan. Algoritma Apriori pembobotan dapat mengetahui hubungan antar item menggunakan nilai support, confidence, dan bobot masing-masing item sebagai tingkat prioritas dari aturan asosiasi, karakteristik aturan asosiasi dapat diketahui, yang mana hasil tersebut dapat membantu rumah sakit dalam meningkatkan kualitas pelayanan. Pada dasarnya, data memiliki partisi yang berbeda satu sama lain, atas dasar tersebut maka dalam penelitian ini dilakukan pengelompokan sebelum dilakukan penggalian informasi menggunakan aturan asosiasi, dimana proses tersebut merupakan salah satu proses yang penting. Setiap kelompok diharapkan mengandung asosiasi tanpa kontaminasi dari bagian kelompok lain yang memiliki pola hubungan yang berbeda. Penelitian ini menggunakan metode pengelompokan hirarki yang dikenal dengan Ward?s Agglomerative yang relatif sederhana untuk dipahami. Diimplementasikan, dan tidak perlu menentukan banyaknya jumlah kelompok pada awal proses.

ABSTRACT
General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.;General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.;General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees? re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward?s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance., General health examinations are common elements of health care in some country. Taiwan demand for healthcare services has increased over the past decade. The increase has been driven by several factors, including an ageing population, and the increasing prevalence of chronic disease. The fluctuation number of examinees with unpredictable coming behavior makes hospital difficult to provide the satisfying service. Hospital needs to make strategic planning such as healthcare management to solve this problem by predicting examinee coming. Data mining applications in healthcare is the realization that data mining can generate information that very useful to all parties involved in the healthcare industry, such as improving the treatment quality of hospitals. This research used clustering and association rule task to know the pattern of cerebrovascular medical examination databases to predict examinees’ re-coming. The Weighted-Apriori algorithm finds out the relationships among item sets using support, confidence, and weight of each feature as the priority rank of the association rule, the characteristic of the rule can be generated, which help the hospital to improve the service quality. The data is performed on partitions that are essentially distinct from each other is the reason why clustering performs before association rule mining is one of essential process. Each cluster would be expected to contain associations without interference or contamination from other sub groupings that have different patterns of relationships. This research used hierarchical clustering method called Ward’s agglomerative which relatively simple to understand, implement, and does not need to specify number of clusters in advance.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44552
UI - Tesis Membership  Universitas Indonesia Library
cover
Zerwekh, JoAnn Graham
Philadelphia: W.B. Saunder , 1999
610.73 ZER w
Buku Teks SO  Universitas Indonesia Library