Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Yusuf Fauzi
Abstrak :
Radar mempunyai kegunaan yang sangat luas dan tersebar pada berbagai bidang. Dari kepentingan militer seperti untuk pengawasan, kendali peluru ataupun untuk kepentingan sipil seperti navigasi, penindraan jarak jauhpemantauan cuaca maupun apliksai untuk dunia industri. Salah satu bagian yang penting dalam meningkatkan unjuk kerja sistem radar adalah filter. Filter merupakan suatu perangkat transmisi yang memiliki fungsi untuk melewatkan frekuensi tertentu dengan meloloskan frekuensi yang diinginkan (passband) dan meredam frekuensi yang tidak diinginkan (stopband). Makalah ini membahas suatu desain baru dan sederhana dari filter yang bekerja pada frekuensi 9.37 GHz-9.43 GHz dengan respon frekuensi Chebychev. Bandpass filter (BPF) ini dirancang dengan hairpin ordo lima dengan ditambah open stub dan square groove pada desainnya. Filter ini menggunakan substrat Taconic TLY-5-A, dengan konstanta dielektrik relatif sebesar 2.2 dan lebar 1mm. Simulasi dilakukan dengan perangkat lunak ADS (Advanced Desain System) 2009. ......The Radar has a very broad and uses scattered on different areas. Of military significance as to supervision, for control bullet or the benefit of civilians such as navigation, weather and distance penindraan jauhpemantauan Protocol for the industrialized world. One of the important part in improving performance radar systems is the filter. A Filter is a device which has the function of transmitting to skip certain frequencies to pass the desired frequency (passband) and dampen the unwanted frequencies (stopband). This paper discusses a new design and simplified from a filter that works on a frequency of 9.37 GHz-9.43 GHz frequency response with a Chebychev. Bandpass filter (BPF) is designed with a hairpin of the order of five with open stub and the square groove in design. These filters are used Taconic substrate tly-5-A, with a relative dielectric constant of 2.2 and 1mm wide. Simulations performed with the software ADS (Advanced Design System) 2009.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42233
UI - Skripsi Open  Universitas Indonesia Library
cover
Dewi Puspita Sari
Abstrak :
Beragam aplikasi komunikasi gelombang mikro, mendorong inovasi perangkat transceiver yang mampu bekerja dalam beragam aplikasi secara bersamaan (concurrent). Frekuensi kerja yang saling berdekatan sehingga memungkinkan terjadinya interferensi. Untuk menekan terjadinya interferensi, dibutuhkan filter sebagai penekan frekuensi yang tidak diinginkan dan melewatkan frekuensi yang diinginkan. Teknologi stepped impedance resonator (SIR) dalam bandpass filter (BPF) multiband memiliki jarak minimal antar frekuensi kerja yang ditentukan oleh rasio impedansi (K). Tri-section stepped impedance resonator (3 SSIR) merupakan pengembangan dari SIR yang dapat menghasilkan concurrent multiband BPF. Tetapi frekuensi kerja berikutnya dipengaruhi oleh frekuensi kerja sebelumnya, sehingga tidak dapat menghasilkan bandwidth simetri. Pada penelitian ini dirancang quadband BPF Hairpin 3 SSIR dengan penambahan open stub, sehingga mampu menghasilkan empat passband dan meningkatkan selektivitas BPF. Dengan pengaturan jarak resonator dan memperhitungkan jarak minimal antar frekuensi kerja, sehingga mengurangi pengaruh frekuensi kerja sebelumnya dan terbentuk bandwidth simetri 10 MHz yang diharapkan pada keempat passband. Dari microstrip line dan 3 SSIR diperoleh hasil perhitungan, kemudian dilakukan optimasi pada simulasi untuk mendapatkan frekuensi tengah yang diharapkan pada keempat passband. Hasil simulasi memperlihatkan quadband BPF Hairpin 3 SSIR dapat bekerja pada frekuensi tengah 905 MHz, 1805 MHz, 2605 MHz dan 3305 MHz secara bersamaan. Dengan parameter S11 dan S22 < -10 dB, S21 >-3 dB, VSWR ≤ 2, group delay <10 nS. Namun bandwidth -3 dB belum simetri pada keempat passband. Hasil pengukuran memperlihatkan parameter S21 tidak mendapatkan hasil yang diharapkan pada frekuensi kerja pertama dan keempat. Parameter S11, S22, VSWR, dan group delay telah memenuhi kriteria perancangan, namun terjadi pergeseran frekuensi tengah. ......Multiple microwave communications applications, encourage innovation transceiver device are able to operate in variety of applications simultaneously (concurrent). Operating frequencies that are close together to allow interference. To suppress interference, required filter as a suppressor of unwanted frequency and pass desired frequency. SIR technology in the BPF has a minimum distance between operating frequencies is determined by the impedance ratio (K). 3 SSIR is a development of the SIR is capable of generating concurrent multiband BPF. But the frequency of subsequent work is influenced by the frequency of the previous work, so can not produce symmetric bandwidth. In this research is designed quadband BPF Hairpin 3 SSIR with the addition of the open stub so as to produce four BPF passband and increase selectivity. The resonator spacing and calculate the minimum distance between the operating frequencies, thereby reducing the effect of frequency of previous operate and formed 10 MHz bandwidth symmmetry is expected in the fourth passband. Of the microstrip line and 3 SSIR obtained calculation result, then do optimization in the simulation to obtain the expected center frequency in the fourth passband. The simulation shows quadband BPF Hairpin 3 SSIR can operate at the center frequency 905 MHz, 1805 MHz, 2605 MHz and 3305 MHz simultaneously. With parameter S11 and S22 < -10 dB, S21 >-3 dB, VSWR ≤ 2, delay's group < 10 nS. But bandwidth -3 dB haven't symmetry on passband fourth. Measurement result show parameter S21 haven't gotten expected result on first and fourth operating frequency. Parameter S11, S22, VSWR, and delay's group has met the criteria for design, but the shift in the center frequencies.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T33007
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Rendra Perdana Kusuma Djaka
Abstrak :
Pada penelitian ini, dirancang sebuah triple-band bandpass filter (BPF) menggunakan hairpin Tri Section Step Impedance Resonator (TSSIR), yang dapat bekerja pada frekuensi 1400 MHz, 2400 MHz dan 3800 MHz secara bersamaan, dirancang, dibuat dan dievaluasi. Proses perancangan dan simulasi menggunakan perangkat lunak Advanced Design System (ADS). Bandpass Filter (BPF) yang dirancang menggunakan konfigurasi hairpin TSSIR yang dibuat pada Printed Circuit Board (PCB) FR-4 dengan nilai permitivitas 4.6, ketebalan substrat 1.6 mm dan loss tangent 0.002. Parameter yang digunakan saat perancangan ialah Insertion Loss, Return Loss, VSWR dan Bandwidth. Hasil simulasi Return Loss memiliki nilai -30.156 dB, -20.607 dB, dan -17.287 dB dan hasil fabrikasi pada penelitian ini memiliki nilai Return Loss sebesar dan -15.007 dB, -10.467 dB, dan -10.047 dB. Sedangkan nilai hasil simulasi Insertion Loss sebesar -0.682 dB, -0.855 dB, dan -1.262 dB dan hasil fabrikasi pada penelitian ini memiliki nilai Insertion Loss sebesar -2.236 dB, -2.983 dB dan -12.067 dB. Sehingga pada perancangan kali ini bandwidth pada frekuensi tengah yang ketiga (3800) MHz tidak memenuhi target disebabkan  adanya perbedaan nilai konstanta dielektrik substrat yang memiliki nilai pada rentang 4.6-4.9 pada tempat fabrikasi sehingga terjadinya pergeseran frekuensi tengah dan tidak tercapainya parameter yang diinginkan. ......In this research, a triple-band bandpass filter (BPF) was designed using a hairpin Tri Section Step Impedance Resonator (TSSIR), which can work at 1400 MHz, 2400 MHz and 3800 MHz simultaneously, was designed, fabricated and evaluated. The design and simulation process uses the Advanced Design System (ADS) software. The Bandpass Filter (BPF) was designed using a TSSIR hairpin configuration made on a Printed Circuit Board (PCB) FR-4 with a permittivity value of 4.6, a substrate thickness of 1.6 mm and a loss tangent of 0.002. The parameters used when designing are Insertion Loss, Return Loss, VSWR and Bandwidth. The results of the Return Loss simulation have values of -30,156 dB, -20,607 dB, and -17,287 dB and the fabrication results in this study have Return Loss values of and -15,007 dB, -10,467 dB, and -10,047 dB. While the insertion loss simulation results are -0.682 dB, -0.855 dB, and -1.262 dB and the fabrication results in this study have insertion loss values of -2.236 dB, -2.983 dB and -12.067 dB. So that in this design the bandwidth at the third center frequency (3800) MHz does not meet the target due to differences in the dielectric constant values of the substrate which have values in the range 4.6-4.9 at the fabrication site resulting in a shift in the middle frequency and the desired parameters are not achieved.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Astuti Cahyasiwi
Abstrak :
Polarisasi merupakan salah satu parameter antena yang telah banyak diteliti untuk menjawab kebutuhan aplikasi sistem komunikasi nirkabel. Polarisasi adalah parameter yang menunjukkan bagaimana medan listrik pada gelombang elektromagnetik beradiasi pada medan jauh. Keberagaman polarisasi menjadi salah satu cara dalam meningkatkan kapasitas transmisi sistem komunikasi nirkabel dan bergerak, karena penggunaan antena dengan polarisasi yang berbeda maka spektrum frekuensi dapat kembali digunakan. Beberapa metode untuk mengatur polarisasi telah diteliti baik untuk polarisasi linier maupun melingkar. Beberapa metode juga telah mengajukan pembangkit polarisasi dengan struktur yang serupa namun dengan tambahan rekonfigurasi dapat menghasilkan polarisasi linier dan melingkar. Dari metode terdahulu belum pernah menggunakan metode pembangkit polarisasi yang dapat juga menambahkan parameter antena dengan kemampuan seleksi sebagaimana sebuah filter. Kemampuan filter untuk melewatkan daya pada frekuensi operasi dan menahan daya di luar frekuensi operasinya merupakan fungsi yang penting untuk mencegah terjadinya interferensi pada sinyal telekomunikasi. Selama ini teknik pembangkit polarisasi dan teknik untuk menghasilkan selektifitas pada antena merupakan dua metode yang terpisah. Penelitian ini mengajukan sebuah metode yang menggabungkan teknik pembangkit polarisasi dan teknik pembentuk selektifitas menjadi satu metode yang sama, karena kebutuhan telekomunikasi nirkabel di masa yang akan datang adalah penggunaan perangkat yang terintegrasi dan multifungsi. Disertasi ini mengajukan sebuah metode untuk membangkitkan polarisasi berdasarkan teori polarisasi umum. Medan listrik berjalan yang mewakili polarisasi antena sesungguhnya dapat diuraikan menjadi dua komponen medan listrik maya dengan arah vertikal dan horisontal, sehingga kedua medan listrik yang ortogonal ini dapat diwakili masing-masingnya oleh resonator dengan arah arus permukaan vertikal dan horisontal. Saat penggabungan kedua resonator ini dilakukan, maka polarisasi dapat dibangkitkan menjadi vertikal, 75°, 45° serta melingkar dengan mengubah variabel panjang dan lebar radiator, jarak antara radiator dan resonator serta jarak antara resonator. Integrasi komponen radiator dan resonator ini mengadaptasi integrasi antena-filter menggunakan pencatu tunggal. Metode yang diajukan dimodelkan pada radiator berbentuk persegi dengan arus permukaan vertikal serta resonator yang memberikan arus permukaan horisontal yang dapat direpresentasikan antara lain oleh dua jenis resonator yaitu, interdigital dengan lubang via dan hairpin, dimana kedua resonator ini membentuk komponen ortogonal jika masing-masingnya diintegrasi dengan radiator persegi. Pengujian model dilakukan secara simulasi dan diverifikasi dengan pembuatan sebuah purwarupa antena dengan polarisasi 45° dan dua buah antena dengan polarisasi melingkar serta divalidasi dengan pengukuran. Hasil desain antena-filter dengan resonator interdigital membuktikan bahwa metode yang diajukan berhasil membangkitkan polarisasi vertikal, 75°, 45° pada frekuensi kerja 4.65 GHz, lebar pita impedansi -10 dB sebesar 300 MHz, dan perolehan masing-masing 5,4 dBi, 6,7 dBi dan 6,82 dBi. Antena-filter dengan polarisasi melingkar menggunakan sebuah resonator interdigital berhasil diperoleh dengan frekuensi kerja 4,65 GHz, perolehan 6,467 dBi, lebar pita impedansi -10 dB sebesar 224 MHz dan lebar pita rasio aksial 160 MHz. Antena-filter dengan polarisasi melingkar menggunakan sebuah resonator hairpin juga diperoleh dengan frekuensi kerja 2,58 GHz, lebar pita impedansi -10 dB sebesar 133 MHz, lebar pita rasio aksial 20 MHz dan perolehan 6,8 dBi yang dapat digunakan untuk aplikasi satelit broadcast. Seluruh antena juga memiliki respon perolehan seperti respon filter lolos-pita sebagaimana respon antena-filter. Maka dapat disimpulkan bahwa polarisasi dapat dibangkitkan dengan integrasi dua komponen resonator ortogonal mengadaptasi metode integrasi antena dan filter, dimana keseimbangan besar medan ortogonal dipengaruhi oleh panjang dan lebar radiator persegi, sedangkan perbedaan fasa dipengaruhi oleh besar celah antara radiator dengan resonator. ......One of the antenna’s parameters being discussed widely is its polarization, representing the way the electrical field propagates in the far-field. Polarization diversity is one of the solutions to increase the channel capacity and avoid the cross-band interference. Some methods to excite polarization have been studied both for linear and circular polarization. There has been polarization excitation using the same structure, and with an additional reconfigure, it can perform linear or circular polarization. However, it has never been a polarization excitation method that can also add a selectivity feature to an antenna as in the filter function. A filter can pass the power in the bandpass and block the power out of the bandwidth, which is an essential function to avoid signal interference. In the previous studies, techniques for exciting polarization and techniques for selectivity forming in the antennas are two different methods. While at the same time, the need for wireless telecommunications in the future is the use of integrated and multifunctional devices. So, this study proposes a technique that combines polarization excitation techniques and selectivity shaping techniques into the same method.

This dissertation proposes a method for generating polarization based on general polarization theory. The propagate electric field, representing the antenna's polarization, can be decomposed into two virtual electric field components with vertical and horizontal directions. These two orthogonal electric fields can be represented respectively by resonators with vertical and horizontal surface current directions. Integration of radiator and resonator components adapts antenna-filter integration using a single feed. The proposed method is proved on a rectangular radiator and two different types of resonators which are the interdigital and hairpin.

To prove the method, three prototype filtering antennas each with a vertikal, 75°, and 45° polarization and two filtering antennas with circular polarization are designed and validated using measurement. The results of the filtering antenna with the interdigital resonator proved that the proposed method had succeeded in generating 45° polarization at an operating frequency of 4.65 GHz, an impedance bandwidth -10 dB of 300 MHz, and a gain of 5.4 dBi, 6.7 dBi and 6.82 dBi respectively. Filtering antenna with circular polarization using an interdigital resonator is obtained with a frequency of 4.65 GHz, 6.467 dBi gain, -10 dB impedance bandwidth of 224 MHz and 160 MHz axial ratio bandwidth. Filtering antenna with circular polarization using a hairpin resonator is also obtained with a frequency of 2.58 GHz, -10 dB impedance bandwidth of 133 MHz, 3 dB axial ratio bandwidth of 20 MHz and gain of 6.8 dBi which can be used for broadcast satellite applications. The three antennas have bandpass filter gain responses as is a filtering antenna. It is proven that polarization can be generated by integrating two orthogonal resonator components adapting the antenna and filter integration method, where the balance of the orthogonal magnitude of electrical field is affected by the length and width of the square radiator, while the phase difference is stimulated by the gap between the radiator and the resonator.

Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library