Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Trisna Yuniarti
Abstrak :
Penelitian tesis ini mengusulkan metode data mining untuk peramalan beban listrik jangka pendek dengan menggunakan kombinasi wavelet transform dan algoritma group method of data handling (WGMDH). Wavelet transform digunakan untuk mendekomposisi dan menganalisis sinyal beban listrik yang memiliki tren dan berfungsi sebagai proses penyaringan untuk meningkatkan kualitas data sebelum dilakukan peramalan menggunakan GMDH. Metode diuji pada data beban listrik yang terdapat pada sistem ketenagalistrikan Sumatera. Kinerja metode yang diusulkan dibandingkan dengan metode GMDH tanpa kombinasi wavelet dan metode koefisien. Metode yang diusulkan dapat memperbaiki akurasi peramalan beban listrik jangka pendek dibandingkan dengan model GMDH tanpa wavelet dan metode koefisien, yaitu menghasilkan MAPE lebih kecil dari 2%. ......This thesis proposes a method of data mining for short-term load forecasting using a combination of wavelet transform and group methods of data handling (WGMDH). The wavelet transform is used to decompose, analyze and filter the signals trend of the electrical load to generate electricity load data into a higher quality before forecasting using GMDH. The proposed method is tested on the datasets of the power system of Sumatera. The performance of the proposed method compared with the GMDH method without the combination of wavelet transform and coefficient method. The proposed method can improve the accuracy in short-term load forecasting rather than GMDH without wavelet and coefficient method, the MAPE result is less than 2%.
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45725
UI - Tesis Membership  Universitas Indonesia Library
cover
Bagus Priyambodo
Abstrak :
Menurut IMF, sekitar 1% penurunan pertumbuhan ekonomi di AS akan menurunkanpertumbuhan ekonomi di Asia sebesar 0,5%-1%. Da mpak dari resesi global yang berasal dari resesi di AS akan mempengaruhi proyeksi perekonomian negara-negara di Asia, termasuk Indonesia baik yang sifatnya langsung maupun tidak langsung. Fenomenadiatas memberikan gambaran yang kongkrit hubungan sebab akibat dalam dunia perekonomian secara makro. Penelitian ini membahas tiga model ANN sebagai alat peramalan, yaitu GMDH, Feedforward back propagation neural network dan Elman recurrent neural network. Perekonomian Indonesia di pilih sebagai objek peramalan. Ada dua macam peramalan yang akan di bandingkan diantara ketiga model tersebut. Pertama peramalan multivariate dimana komponen yang di gunakan sebagai input adalah variabel makro ekonomi Indonesia. Kedua adalah peramalan univariate / time series dimana komponen yang di gunakan sebagai input adalah nilai GDP indonesia dari tahun 1970. Hasil peramalan multivariate dari ketiga model ANN menunjukan bahwa variabel makro ekonomi dapat digunakan sebagai input untuk peramalan multivariate pertumbuhan ekonomi Indonesia. Dari hasil pengujian, diketahui bahwa ANN dapat digunakan sebagai alternatif untuk memprediksi ekonomi Indonesia di masa sekarang maupun di masa yang akan datang. Pemahaman terhadap fenomena per- ekonomian Indonesia saat ini dan hubungannya dengan kemungkinan-kemungkinan yang terjadi di masa depan sangat membantu dalam menentukan sikap atau kebijakan yang mengarah ke harapan atau ekspektasi yang ingin dicapai.
According IMF, about 1% descent of US growth economic will descent growth economic in Asia about 0,5%-1%. Impact of global recession that came from US will influence economic projection in Asia, including Indonesia. This phenomenon give concrete description about relationship between cousity in macro economics world. This research will explain about three ANN model as forecasting tool. The three ANN model is GMDH, Feedforward backpropagation and Elman recurrent. Indonesian economics choose as object for forecasting. There is two type of forecasting that will compare between three model ANN above. First is multivariate forecasting where component that used as input is variable of macro economic Indonesia. And second is univariate / time series where component that used as input is GDP of Indonesia from 1970. Result of forecasting show that macro economic variable can be use as input for multivariate forcasting growth Indonesian economic. From research result, show that ANN can be used as alternative tool for forecasting Indonesian economics. Deep understanding about phenomenon of Indonesian economic now and connectivity with posibility that will happen in future will help Goverment to make decision to achieve goal that already plan.
Depok: Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library