Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2003
S27378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tansa Qurrota A`Yuna
Abstrak :
Google mampu meningkatkan keuntungan hingga $200 juta dengan melakukan sebuah eksperimen di mana mereka menguji beberapa warna biru pada tulisan iklan di tampilan website nya. Namun demikian, dalam menemukan tampilan website yang memberikan performa terbaik dari jutaan pengunjung tidaklah mudah. Salah satu kriteria bahwa sebuah website memiliki performa yang baik adalah dengan tingginya click through rate yang dimiliki website tersebut. Untuk menangani permasalahan ini, salah satu metode yang dapat digunakan adalah A/B testing. Cara A/B testing bekerja adalah  dengan membagi pengunjung laman website menjadi dua kelompok; treatment group dan control group. Masing-masing kelompok akan disajikan varian laman website yang berbeda. Respons dari pengunjung atas laman website kemudian dicatat dan diuji performa antara varian A dan varian B. Pada tahap pengujian, ada dua metode yang dapat digunakan yaitu frequentist dan Bayesian. Metode frequentist membuat prediksi hanya menggunakan data yang ada dari percobaan yang dilakukan. Sedangkan metode Bayesian menggunakan prior yang akan akan diperbarui seiring dengan bertambahnya data yang diterima. Output dari metode Bayesian A/B testing berupa keyakinan akan rentang nilai sebenarnya dari click through rate. Keyakinan ini dituangkan dalam bentuk distribusi posterior. Dari penelitian yang dilakukan, diperoleh hasil bahwa metode Bayesian A/B testing  mampu memberikan inferensi yang cukup baik meskipun dengan pemilihan prior yang tidak informatif. Dari hasil tersebut, maka sebuah perusahaan bisa memanfaatkan metode ini menguji tampilan laman website.
Google was able to increase profits by up to $200 million by conduction experiments where they tested some shades of blue of the advertisement link in their website display. However, finding the website display which provides the best performance from millions of visitors is not easy. One of the criteria that a website has a good performance is that it has a high number of click through rate. To solve this problem, one of the method that can be used is A/B testing. A/B testing works by dividing the website visitors into two groups; treatment group and control group. Each group will be presented with different website page variants. The responses from visitors are recorded and tested for knowing which variant performs better. At the testing stage, there are two methods that can be used, frequentist and Bayesian. The frequentist method makes predictions using only the data available from the experiments. While the Bayesian method uses priors that will be updated as the data is received. The output from Bayesian A/B testing method is a belief of range from the actual value of click through rate. This belief is expressed in the form of posterior distribution. From this research, Bayesian A/B testing method is able to provide quite good inference even though we select a non informative prior. From this result, a company can apply this method to test the website display.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chika Tsabita Aurellia
Abstrak :
Sistem bonus malus yang biasanya digunakan pada perusahaan asuransi adalah sistem bonus malus klasik, yang perhitungannya hanya didasarkan pada riwayat banyaknya klaim pemegang polis. Namun, hal ini akan menimbulkan ketidakadilan karena besar kerugian pemegang polis bervariasi, sehingga pada penelitian ini dibangunlah modifikasi sistem bonus malus yang juga mempertimbangkan severitas klaim pemegang polis di masa lalu dengan kredibilitas bivariat yang menggunakan metode Bayesian. Dikarenakan klaim yang diajukan masing-masing pemegang polis dapat bernilai sangat besar ataupun sangat kecil, maka ditentukanlah suatu nilai batas untuk memisahkan kedua jenis klaim tersebut. Distribusi yang digunakan untuk banyaknya klaim adalah distribusi Poisson Gamma. Sedangkan, total banyaknya klaim yang berukuran lebih besar dari nilai batas mengikuti distribusi Binomial Beta. Premi bonus malus akan didapatkan dengan menghitung rasio antara premi Bayes dan premi prior, yang masing-masing didapatkan dari hasil ekspektasi distribusi posterior dan distribusi prior secara berurutan. Aplikasi pada data asuransi kendaraan bermotor asal Swedia menunjukkan bahwa besar premi yang dibayarkan pemegang polis berbanding lurus dengan severitas klaim dan banyaknya klaim atau dengan kata lain model yang dihasilkan memberikan biaya premi yang lebih rendah untuk pemegang polis yang memiliki riwayat klaim bernilai lebih kecil dari nilai batas, begitupun sebaliknya. ...... The bonus-malus system that is commonly used by insurance companies is the traditional bonus-malus system, which is based solely on the policyholder's claims frequency history. However, this approach can lead to unfairness due to variations in the severity of the policyholder's losses. Therefore, this thesis will focus on modifying the bonus-malus premium determination system to consider both the frequency and severity of the policyholder's past claims using bivariate credibility with Bayesian methods. Since claims made by policyholders can have significantly different values, can be very large or very small, a threshold is established to distinguish between these two types of claims. The claim frequency will follow a Poisson Gamma distribution. On the other hand, total claims exceeding the threshold value will follow a Binomial Beta distribution. The bonus-malus premium will be obtained by calculation the ratio between the Bayesian premium and the prior premium, which respectively will be derived from the expected value of the posterior distribution and the prior distribution. By applying this model to the automobile insurance data from Swedia, it demonstrates that the premium amount paid by the policyholder is directly proportional to the severity and frequency of claims. In other words, the resulting model offers lower premium costs for policyholders with a claims history below the threshold value and higher costs for those above it.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library