Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Abstrak :
Jaman dahulu lontar merupakan salah satu media yang digunakan untuk menulis tulisan Bali. Lontar-lontar tersebut digunakan untuk mendokumentasikan sesuatu yang dianggap penting baik berupa cerita sejarah, silsilah keluarga maupun teknik pcngobatan. Masih banyak warisan lontar yang disimpan oleh masyarakat Bali hingga saat ini. Karena cara penyimpanan yang kurang baik serta dipengaruhi oleh cuaca dan waktu, lontar-lontar peninggalan tersebut banyak yang mengalami penurunan kualitas. Untuk menangani hal ini diperlukan sebuah sistem yang dapat meningkatkan kualitas lontar yang disimpan secara digital. Metode yang digunakan dalam pembuatan sistem adalah Wavelet Denoising, dimana sistem bekerja dimulai dari tahap mencerahkan gambar, mengkonversi gambar menjadi grayscale, kemudian gambar dihaluskan dan dicerahkan kembali untuk mendapatkan hasil yang lebih maksimal. Tahapan akhir adalah menghilangkan noise yang hadir pada citra, yang diketahui melalui penelusuran intensitas setiap pikselnya. Dari beberapa percobaan, sistem ini terbukti memberikan hasil yang baik, terutama ketika input yang diberikan dalam kualitas yang cukup baik pula.
005 JEI 1:2 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Raizha Rayhananta Prayoga
Abstrak :
Sinyal dalam konteks telekomunikasi membawa informasi dengan variasi terhadap waktu, termasuk sinyal suara yang bersifat non-stasioner. Kehadiran noise dalam sinyal suara dapat mengurangi kualitas informasi yang ditransmisikan. Penggunaan transformasi wavelet telah menjadi pendekatan yang efektif dalam denoising sinyal suara, namun untuk hasil optimal, diperlukan pemilihan model threshold dan wavelet families yang tepat. Penelitian ini mengeksplorasi kinerja berbagai model threshold dalam denoising sinyal suara. Hasil penelitian menunjukkan bahwa waktu komputasi untuk denoising meningkat seiring dengan peningkatan level dekomposisi, dengan threshold Donoho memiliki waktu komputasi tercepat, diikuti oleh modifikasi, dan acuan Gang Yang [9] paling lambat. Penggunaan wavelet families juga memengaruhi nilai Mean Squared Error (MSE) dan waktu komputasi. Model threshold acuan Gang Yang [9] memberikan MSE terbaik dengan waktu komputasi 119,252 detik pada level dekomposisi 4, sedangkan threshold modifikasi menawarkan waktu komputasi lebih cepat yaitu 87,965 detik dengan MSE hampir setara pada level dekomposisi 2. Peningkatan panjang filter wavelet meningkatkan kompleksitas program dan waktu komputasi, namun efeknya bervariasi pada tiap model threshold. Selain itu, dilakukan denoising pada noise teras rumah (SPL 83,445 dB) dan noise mesin konstruksi (SPL 87,439 dB). Pada noise teras rumah, level dekomposisi 1 dengan Biorthogonal 3.3 (bior33) paling efektif, mengurangi SPL menjadi 40,216 dB. Pada noise mesin konstruksi, level dekomposisi 1 dengan Reverse Biorthogonal 3.3 (rbio33) paling efektif, menurunkan SPL menjadi 69,569 dB. Berdasarkan hal tersebut, dalam memilih model threshold yang optimal, perlu dipertimbangkan nilai MSE dan efisiensi komputasi. Penelitian ini memberikan wawasan penting dalam memilih metode denoising yang efektif untuk meningkatkan kualitas sinyal suara. ......In telecommunications, signals carry information with variations over time, including non-stationary audio signals. Noise in audio signals can degrade the quality of transmitted information. Wavelet transform is an effective approach for denoising audio signals, but optimal results require appropriate threshold models and wavelet families. This study explores the performance of various threshold models in denoising speech signals. Results indicate that computation time for denoising increases with decomposition levels; the Donoho threshold is the fastest, followed by the modified model, with Gang Yang [9]'s reference model being the slowest. Wavelet family choice significantly impacts Mean Squared Error (MSE) and computation time. The Gang Yang [9] reference model offers the best MSE at SNR 20-27 with a slight computation time increase (119.252 seconds at level 4), while the modified model achieves faster computation (87.965 seconds at level 2) with nearly equivalent MSE. Longer wavelet filters increase program complexity and computation time, varying by threshold model. Additionally, denoising was performed on residential porch noise (SPL 83.445 dB) and construction machinery noise (SPL 87.439 dB). For residential porch noise, decomposition level 1 with Biorthogonal 3.3 (bior33) was most effective, reducing the SPL to 40.216 dB. For construction machinery noise, decomposition level 1 with Reverse Biorthogonal 3.3 (rbio33) was most effective, lowering the SPL to 69.569 dB. Thus, selecting an optimal threshold model involves considering both MSE and computational efficiency. This study provides key insights for effective denoising methods to enhance speech signal quality.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
Noise presence in real world data signal is inevitable. Under ideal conditions, this noise may decrease to such negligible levels so data obtained might be consideret not corrupted by noise....
Artikel Jurnal  Universitas Indonesia Library
cover
Wihartini
Abstrak :
Penelitian ini membahas studi tentang deteksi perubahan penutup lahan Kalimantan Tengah, menggunakan multi-temporal Synthetic Aperture Radar (SAR) JERS-i. Penggunaan citra SAR untuk observasi muka bumi dimana kondisi berawan dan kabut merupakan hambatan utamanya, mempunyai potensi yang sangat besar dalam memonitor perubahan area. Tetapi adanya proses koherensi data SAR membuat citra tersebut dengan mudah akan tercemar oleh bising speckle, yang merupakan.sinyal tak bebas dan berlaku sebagai bising multiplikatif. Pokok bahasan dari penelitian ini yang pertama adalah meminimumkan bising (denoising) speckle dengan menggunakan algoritma a trous. Selanjutnya kesulitan penggunaan citra optis untuk identifikasi obyek pada daerah yang sering berawan dan hujan lebat akan digantikan dengan citra SAR dengan memanfaatkan sifat transfcrmasi dari algoritma wavelet a troust. Transformasi ini akan menghasilkan satu set citra detail dari skala yang berbeda, sehingga citra SAR yang merupakan single band akan mendapatkan tambahan band dari citra-citra detail tersebut. Dengan demikian pemrosesan citra SAR dapat dianalogikan sebagai pemrosesan multiband dari citra optis, sehingga dapat menggali lebih banyak informasi untuk identifikasi obyek. Tahap berikutnya dilakukan pengklasteran pada citra detail tersebut dengan teknik Pemetaan Swa-Atur (Self-Organizing Map (SOA4)") karena tidak tersedianya data groundtruth. Tahap lerakhir adalah deteksi perubahan area menggunakan teknik Pcrbedaan Citra ("Image Differenciing") dan Analisa Komponen Utama ("Principle Component Analysis (PCA)"). Proses denoising pada pra-pengolahan akan dilakukan dengan menggunakan pemodelan bising. Pada citra SAR karena bisingnya adalah speckle yang bersifat multiplikatif maka perlu dilakukan proses homomorphik, yaitu proses untuk memisahkan komponen deterministik (sinyal) dengan komponen statistik (bising) sehingga bising dapat dimodelkan dalam bentuk Gaussian. Untuk itu sebelum denoising citra akan di log-kan terlebih -dahulu sehingga terpisah antara kompcnen sinyal dan komponen bisingnya. Transformasi a trous adalah transformasi wavelet multiresolusi yang dilakukan skala (resolusi) per skala tanpa ada desimasi. Hasilnya adalah satu set citra detail wt (dimana i menyatakan tingkat skala, I 1,2.j ) dan satu citra approksimasi pada skala tertinggi c1, tanpa terjadi peruoahan ukuran citra pada setiap skala. Dalam transformasinya harga piksel ke-k ditentukan oleh c;+r(k) = ., h(n) c;(kl 2'n), dimana h adalah koefisien filter 133 spline dengan -2 n < +2 , menyebabkan harga pixel tersebut menjadi berkurang atau bertambah ditentukan oleh 5 harga pixel yang ke-(k+2'n). Secara analitis korelasi citra detail pada skala (i-1) dengan citra detail pada skala I dapat dibuktikan melalui w; = c(,.0 - c; dan secara eksperimen dapat dibuktikan melalui matriks korelasi dari PCA. Dengan adanya korelasi menyebabkan persoahan obyek dalam citra-citra detail dapat diamati. Citra detail dari transformasi a trous yang masih mengandung bising speckle akan di denois menggunakan teknik Multiresolution Support, yaitu teknik untuk uji signifikansi bising pada setiap pixel dari citra. Signifikansi bising didasarkan pada nilai standard deviasi 6; dari citra detail pada skala j dikalikan dengan konstanta K, yaitu K6.j. Hal inilah yang menyebabkan pemilihan harga K dipengaruhi oleh daerah observasi. Pada penelitian ini di lakukan percobaan dengan harga K = 2, 2.5, 3, 3.5 dan hasilnya yang terbaik adalah K = 3. Hasil rekonstruksi setelah uji signifikansi Multiresolulion Support adalah citra dengan residual artifact atau citra dengan struktur yang tidal: sebenarnya, oleh karena itu perlu dilakukan proses guna mengurangi efek residual artifact tersebut. Proses pengurangan residual artifact adalah suatu proses iterasi dimana akan dihitung citra residu, yaitu pengurangan citra asli dikurangi dengan citra dengan residual artifact. Pada setiap iterasi citra residu akan ditransformasi menggunakan a trous menjadi satu set citra detail residu dan citra appraksimasi residu. Selanjutnya ditentukan koefisien wavelet signifikan dan dilakukan rekonstruksi kembali. Bila residu masih dinyatakan signifikan maka citra residu akan ditambahkan ke citra residual artifact pada proses sebelumnya. Selanjutnya dilakukan proses iterasi kembali sampai harga residu sudah tidak signifikan lagi. Pada penelitian ini diambil toleransi error a 5 0.002 dan hasilnya adalah citra yang telah di denois atau citra denoising. Pada kelompok wavelet, hasil denoising menggunakan trous dapat menekan bising sampai 43% tanpa ada kerusakan struktur dan penurunan nilai rata-rata yang sangat rendah sampai 0.005%. Meskipun hasil denoising tidak sebaik Haar (50%) atau Daubechies (481') tapi trous mempunyai kekhususan dimana nilai variannya masih cukup tinggi, tidak mengalami pengerutan ukuran pada saat transformasi dan terdapat redundansi pada citra detaiinya sehingga tidak banyak kehilangan informasi. Hasil penelitian ini juga memperlihatkan bahwa transformasi a Emus mempunyai performansi yang cocok untuk aplikasi deteksi perubahan penutup laltan, karena obyek dalam citra, dapat diamati dalam skala yang berbeda. Makin tinggi tingkat resolusinya maka obyek dengan frekuensi rendah (misal sungai) akan makin jelas struktumya, sedang obyek dengan frekuensi tinggi (misal pohon-pohon yang bergerombol) akan nampak pada beberapa skala rendah dan selanjutnya akan menghilang. Hal ini terjadi karena dalam transfonnasinya harga pixel pada skala-(j+ I) ditentukan berdasarkan harga pixel ke-(k+2'n). Selanjutnya untuk identifikasi obyek, citra denoising akan ditransforrnasi menggunakan wavelet a trous sampai skala 4, karena pada skala 5, terlihat pembesaran obyek sungai sudah tidak proporsional Iagi. Citra detail ini akan di analogikan sebagai band-band seperti pada teknik pemrosesan multiband dari citra optis. Selanjutnya dilakukan pengklasteran pada masing-masing citra detail menggunakan teknik Pentetaan Swa-Atur (SCM), Untuk melakukan deteksi perubahan penutup lahan, akan dilakukan dua cars pemrosesan yaitu pertama akan dilakukan proses Perbedaan Citra pada satu set citra detail yang sudah terklaster dan yang kedua menggunakan PCA, Pada proses PCA dilakukan penseleksian band berdasarkan harga eigenvalue kovariannya. Pertama dipilih band dengan eigcn value terbesar, selanjutnya dipilih band lain yang mempunyai harga eigenvalue kovarian ? 10% dari harga eigenvalue band terbesar. PCA terpilih akan diklasterkan dan dilakukan proses Perbedaan Citra. Hasilnya diperoleh bahwa ada kemiripan antara basil dari proses PCA dan yang langsung dari Perbedaan Citra. Hasil pengamatan memperlihatkan bahwa telah terjadi perubahan pada daerah rawa, scattered trees dan tropical grass, sedangkan untuk obyek sungai, baik yang dalam maupun yang dangkal, sedikit sekali perubahannya. Verifikasi obyek dilakukan menggunakan peta thematik dengan skala 1:250.000 dan citra Landsat TM Kalimantan tengah yang diambil pada Maret (97).
Wavelet A. Trolls Algorithm Aided Synthetic Aperture Radar Image Analyses Applied to Land Cover C1-Imange Detection in Central Kalimantan This research studied the land coverage change detection in Central Kalimantan using multi-temporal Synthetic Aperture Radar (SAR) MRS-I. The use of SA.R image for earth surface observation where haze and cloud coverage become a problem, has great potentiality in monitoring the area change. Due to coherence process of the SAR data, this makes the image easily contaminated by speckle noise, which is an independent signal and act as multiplicative noise. The main topic of this research is to minimize the speckle noise (denoising) by using the trout algorithm. Subsequently, to identify objects, SAR image processing is analogue with multiband process of the optical image. Because SAR is single band, a trous wavelet transformation is used to obtain the additional band for a set of detail image. The next step is clustering on the detail image with Self-Organizing Map {SOM} technique due to the unavailability of ground truth. The final step is area change detection with Image Differencing and Principle Component Analysis (PGA) techniques. The denoising in pre-process is performed with noise modeling. In SAR image, since the noise is speckle that is multiplicative in nature, homomorphism process or the process to separate deterministic (signal) and statistic (noise) components is performed so the noise can be modeled in Gaussian. Therefore, before denoising process, image has to take its logarithm first so the signal component is separated from the noise component. A trous transformation is a multiresolution wavelet transformation done in scale (resolution) by scale without decimation. The result is a set of detail image wt (where i represents scale level, r = 1,2.j ) and one approximation image in highest scale e without change in image size in all scales. This did not occur in known wavelet transforms, like Haar and Daubechies, where the transformation has one specific direction and suffering from the shrinking of the image size with the increase of the scale resolution. In the transformation, the value of the 11f' pixel determined by c;+r(k) = 2, h(n) c;(k+2'n), where h is the B3 spline filter coefficient with -2 5 n 5 +2, causing the value of the pixel to decrease or increase according to five (k+2'n) pixel values. The detail image on scale i is obtained from w, = c(1_J) - c,, so there are redundancy of the detail image scale (i-i) with the scale i. This causes the object changes in detail images to become observable. The detail image from a trous transformation that still contain speckle noise is denoised with Multiresolution Support technique, which is a technique for noise significancy testing on each image pixels. The noise significance is based on the standard deviation value of the detail image on the scale j (cr) multiplied with the constant K, that is K6;. This causes the choice of K value affected by the observation area. In this research, experiments are performed with the value of K = 2, 2.5, 3, 3.5 and, the best result is at the K value of 3. The reconstruction result after Multiresolution Support significance test is an image with residual artifact; therefore, it is needed to perform a process to reduce the effect of the residual artifact. The process to reduce the residual artifact is an iteration process where residual image is counted, which is original image reduction subtracted by image with residual artifact. During each iteration, residual image is transformed with a trous into a set of residual detail images and a residual approximation image. Subsequently, significant wavelet coefficient is determined, and the reconstruction is performed. If the residue still significant, then the residual image is added to the residual artifact image of the previous process, and the iteration is performed until the residual value is not significant. In this research, error tolerance is taken at e 5 0,002 and the result is a denoised image. In a wavelet group, the denoising result with a trous can suppress the noise down to 43% without structural damage and very low average devaluation of 0.005%. Although the denoising result is not as good as Haar (50%) or Daubechies (48%), a trous have specification that the transformed image result did not suffer the shrinking in size and have redundancy on the detail image so it's not lose much information. While in wavelet transformation with Haar and Daubechies, the higher the scale will result in structural damage, where visually indicated by boxed shape in Haar, and spots in Daubechies. The result of this research also shown that 'a trous transformation have suitable performance for land coverage area change detection application, and since the objects are in images, it's observable in different scales. Low-frequency objects will become clearer when the resolution is higher, while higher-frequency objects visible in some lower scales and subsequently disappearing. This happens because in the transformation the pixel value in the scale -0+1) is determined by the value of the pixel -(k+ 2'n). For the object identification, denoised image is transformed with a trous wavelet resulting in a set of detail images. Image transformation is done to 4U' scale, since in the 5u' scale, the object magnification is no longer proportional. This detail image is analog as bands like in multib and processing of optical image. Clustering is done on each detail images with. Self-Organizing Map technique. To detect the area coverage change, two processes are performed. First is direct Image Differencing process on a set of clustered detail images, second is with the PCA. In the PCA process, the first step is band selection based on the eigen value co-variant. The band with the biggest eigen value is chosen first, then pick another band with co-variant eigenvalue ? 10% of the biggest. eigen value band. The chosen PCA from March 97 and August 98 images are clustered and processed with image Differencing. So, to process the area change detection with SAR image could be done right away with a trolls wavelet transformation, and for the area detection is using Image Differencing. The result indicates that there are similarities between the result with PCA and without PCA. The observation result shown that there are changes on swamps, scattered trees, and tropical grass areas. While for rivers, either deep or shallow, there is very little change. Object verification is done with thematic map on 1:250000 scale and Landsat TM image taken on March 97.
Depok: Fakultas Teknik Universitas Indonesia, 2002
D430
UI - Disertasi Membership  Universitas Indonesia Library
cover
Abstrak :
It is realized that an important thing in medical image visualization serving is to be able to see human as observe. Nevertheless, certain noise is rising in image acquisition causes image quality is reducing. An image involvement is a process in which an image can be best analyzed. Denoising is a one of the image enhancement techniques. An adaptive thresholding technique based wavelet serves to reduce noise from medical image. A discrete wavalet transformation is used in this research. The STH (Soft Thresholding), HTH (Hard Thresholding), and MPTH (Multiscale Products Thresholding) methods are used to calculate and compare as medical image Denoising results. Two criteria, MSR (Mean-to-Standard Deviation Ratio) and CNR (Contrast-to-Noise Ratio) have proposed to perform as Denoising at medical image. From the result, it can be concluded that denoising by using MPTH (Multiscale Products Thresholding) method, the values of MSR (Mean-to-Standard Deviation Ratio), CNR (Contrast-to-Noise Ratio) are greater than STH (Soft Thresholding), and HTH (Hard Thresholding) can be obtained.
MAILMAR
Artikel Jurnal  Universitas Indonesia Library
cover
Fahmi Basyah
Abstrak :
ABSTRAK
Denoising dengan transformasi wavelet tradisionai (ortogonal) terkadang menampakkan apa yang disebut dengan artifak, yaitu noise yang dapat berupa osilasi tak beraturan, yang diantaranya dikenal sebagai fenomena Gibbs. Ini menipakan kelemahan yang ada pads denoising basis wavelet.

Suatu metode digunakan daiam rangka menekan atau mengurangi artifak tersebut (noise). Metode ini diperkenalkan olch Coifman, dan dikenal dengan metode Cycle-Spinning, serta variannya yang dikenal dengan metode Translasi-Invarian.

Pada skripsi ini, akan ditunjukkan perbandingan unjuk kerja dari metode_metode tersebut dibandingakan dengan metode denoising tradisionai (wavelet shrinkage biasa seperti VisuShrink). Unjuk kerja dari metode ini diperlihatkan daiam bentuk penampilan visual objek basil rekonstruksi dan pengitungan root niean square error (nnse)-nva dalam suatu tabel dan graft perbandingan.

Objek yang digunakan untuk proses denoising yaitu berupa suatu sinval artifisial menurut suatu fungsi tertentu, yang dalam beberapa penclitian dan iiterarur, objek-objek ini cukup sering digunakan.

Perbandingan yang dilakukan tidak hanya denoising daiam domain wavelet, namun juga denoising dalam domain paket cosinus yang mcnunjukkan bahwasannya metode ini dapat diterapkan dan bermanfaat untuk metode-metode lainnya (selain wavelet). Berhagai variasi dilakukan dalam simulasi yang menggunakan perangkat lunak Matiab versi 5.3.
2000
S39640
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Abstrak :
This paper is devoted to the formulation of a decomposition algorithm using tight wavalet frames, in a multivariate setting.....
ITJOSCI
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
The aim of this paper in to investigate the performance of welch based de-noising technique for a set of chirp signals corrupted by gaussian noises....
Artikel Jurnal  Universitas Indonesia Library
cover
I Gede Pasek Suta Wijaya
Abstrak :
Acoustic emission (AE) technique is developed to locate source of damage inside of concrete. However, the AE signal is interfered by much noise, which makes the determination of first time amplitude of AE signal is hard to be carried out. In fact, the determination of this parameter is a significant part for locating the source of damage in concrete. Therefore, one of the denoising methods called wavelet based denoising is proposed. In this case, some wavelet bases function are investigated to find out the proper wavelet bases function to perform the denoising of AE Signal. From the experimental data, the best wavelet basis function for this case is Coiflet, which is shown by providing the best SNR than the other wavelet families. In addition, the determining cracks locations on concrete can be performed easier on denoised AE signal than on noisy AE signal.
Depok: Faculty of Engineering, Universitas Indonesia, 2014
UI-IJTECH 5:3 (2014)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2   >>