Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
cover
Jakarta: Departemen Kesehatan , 1999
614.588 52 IND p
Buku Teks  Universitas Indonesia Library
cover
Nessa Amelia Aquita
Abstrak :
Demam Berdarah termasuk penyakit yang paling umum terjadi di negara tropis seperti Indonesia dan sering berakibat fatal dalam kesehatan. Prediksi dini terhadap jumlah kasus Demam Berdarah merupakan salah satu kunci untuk menanggulangi risiko penyebarannya dalam masyarakat dan dapat membantu pihak-pihak yang terkait seperti Dinas Kesehatan Daerah dalam membuat kebijakan dan rencana pencegahan. Pada tugas akhir ini, untuk angka insiden DBD diprediksi menggunakan metode Artificial Neural Network dengan dua algoritma berbeda untuk proses training ANN, yaitu Backpropagation (ANN-BP) dan Genetic Algorithm (ANN-GA). Penggunaan GA dalam training ANN bertujuan untuk membandingkan dengan BP yang cenderung tidak menemukan minimum global dari fungsi errornya. Variabel prediktor yang digunakan adalah jumlah insiden dan variabel cuaca sebelumnya yang terdiri dari temperatur, kelembapan, dan curah hujan. Variabel prediktor ditentukan dengan mencari time lag dari masing-masing variabel prediktor terhadap jumlah insiden menggunakan korelasi silang. Model yang dibentuk dievaluasi dengan Mean Squared Error, dan hasil prediksi dievaluasi menggunakan Mean Squared Error, Root Mean Squarred Error, dan Mean Absolut Error. Pada tugas akhir ini metode ANN-BP menghasilkan hasil prediksi jumlah insiden DBD kumulatif lebih baik dibandingkan metode ANN-GA pada kota madya Jakarta Pusat, Jakarta Selatan, dan Jakarta Utara, dengan selisih MSE berturut-turut 3,966; 50,162; 23,933; selisih RMSE masing-masing 0,232; 1,742; 1,304; dan selisih MAE masing-masing 0,496; 0,901; 0,734. Sedangkan pada Jakarta Barat dan Jakarta Timur metode ANN-GA menghasilkan hasil prediksi jumlah insiden DBD kumulatif lebih baik dibandingkan metode ANN-BP, dengan selisih MSE berturut-turut 16,915; 37,621; selisih RMSE masing-masing 0,484; 1,44; dan selisih MAE masing-masing 0,319; 0,739. ......Dengue Fever is one of the most common diseases in tropical countries like Indonesia and is often fatal in health. Early prediction of the number of Dengue Fever cases is one of the keys to overcoming the risk of its spread in the community and can assist related parties such as the District Health Office in making policies and prevention plans. In this final project, the DHF incidence rate is predicted using the Artificial Neural Network method with two different algorithms for the ANN training process, namely Backpropagation (ANN-BP) and Genetic Algorithm (ANN-GA). The use of GA in ANN training aims to compare with BP which tends not to find a global minimum of its error function. The predictor variables used are the number of incidents and previous weather variables consisting of temperature, humidity, and rainfall. Predictor variables are determined by finding the time lag of each predictor variable to the number of incidents using cross correlation. The model formed was evaluated with Mean Squared Error, and the predicted results were evaluated using Mean Squared Error, Root Mean Squared Error, and Mean Absolute Error. In this final project, the ANN-BP method produces a prediction of cumulative DHF incidents that is better than the ANN-GA method in the cities of Central Jakarta, South Jakarta, and North Jakarta, with a MSE difference 3.966, 50.162, 23.933, respectively, the difference in RMSE each city is 0.232, 1.742, 1.304, respectively and the MAE difference 0.496, 0.901, 0.734, respectively. Whereas in West Jakarta and East Jakarta the ANN-GA method produces a better prediction of cumulative DHF incidents compared to the ANN-BP method, with a MSE difference 16.915, 37.621, respectively, the difference in RMSE each city is 0.484, 1.44, respectively, and the MAE difference of each city is 0.319, 0.739, respectively.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadel Muhammad
Abstrak :

Demam Berdarah Dengue (DBD) adalah salah satu masalah kesehatan masyarakat yang utama di Indonesia. Jumlah kasus DBD semakin bertambah seiring dengan laju pertumbuhan mobilitas dan populasi manusia. Radial basis function neural network (RBFNN) pada tugas akhir ini diimplementasikan untuk prediksi jumlah insiden mingguan DBD di DKI Jakarta. RBFNN adalah salah satu feed forward neural neworks yang hanya memiliki satu lapisan tersembunyi. Lapisan tersembunyi pada RBFNN dikonstruksi oleh sebuah fungsi aktivasi. K-means clustering digunakan untuk menunjang peforma dari RBFNN, yaitu untuk menentukan pusat dan lebar dari fungsi aktivasi yang digunakan. Performa dari RBFNN dilihat dari RMSE yang dihasilkan pada data training dan data testing. Dari implementasi yang dilakukan, dapat diperoleh bahwa pemilihan struktur atau model RBFNN sangat berpengaruh terhadap hasil prediksi yang diperoleh. Pada tugas akhir ini, RBFNN mampu memprediksi insiden mingguan DBD di DKI Jakarta dengan cukup baik tetapi RBFNN belum dapat menjakau data yang melonjak tinggi pada data testing.


Dengue Hemorrhagic Fever (DHF) is one of the main public health problems in Indonesia. The number of DHF cases and the spread of this disease is increasing along with mobility and population density. Radial basis function neural network (RBFNN) in this final project is implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN in this final project was implemented to predict the number of weekly DHF incidents in DKI Jakarta. RBFNN is a feed forward neural network model that has a single hidden layer. The hidden layer of RBFNN is constructed by an activation function. K-means clustering algorithm is used to improve the performance of RBFNN to determine the center and width of the activation function. The performance of RBFNN can be seen from the RMSE generated in the training data and testing data. From the implementation, it can be obtained that the choice of RBFNN structure or model is very influential on the predicted results obtained. In this final project, RBFNN is able to predict the weekly incidence of DHF in DKI Jakarta quite well but RBFNN has not been able to predict well the data that soared in the testing data.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library