Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
M. Alwi Sukra
Abstrak :
Teknologi deep learning dapat menyelesaikan banyak masalah yang sulit dipecahkan oleh rumus matematis biasa. Salah satu masalah yang bisa diatasi adalah bahaya akibat rasa kantuk yang dialami pengemudi saat berkendara. Pada penelitian ini dibuat aplikasi android sistem deteksi kantuk yang memanfaatkan kamera smartphone. Kamera digunakan untuk mendapatkan informasi fitur citra wajah yaitu aspek rasio mata kanan, aspek rasio mata kiri, aspek rasio mulut, percentage of eye closure (PERCLOS), tingkat kejadian microsleep, dan tingkat kejadian menguap. Fitur-fitur tersebut didapat dari proses transformasi titik-titik landmark wajah. Pada penelitian ini, ditemukan bahwa metode terbaik untuk mendapatkan titik landmark wajah adalah dengan pelacakan Lucas-Kanade optical flow dengan 5 jumlah frame yang dilacak. Fitur-fitur yang dikumpulkan dapat digunakan untuk mendeteksi tingkat kantuk dengan memanfaatkan model deep learning yang telah dilatih dengan data yang dikumpulkan dari 10 orang. Pada penelitian ini, ada 2 jenis model deep learning yang dilatih untuk mendeteksi tingkat kantuk yaitu model deep neural network (DNN) dan long short-term memory (LSTM). DNN memiliki keseluruhan performa yang lebih baik dibandingkan LSTM. DNN memiliki accuracy sebesar 0.902538 dan f1 sebesar 0.899563. Sedangkan LSTM memiliki dari accuracy sebesar 0.891857 dan f1 sebesar 0.892689. Aplikasi android sistem deteksi kantuk yang dibuat menggunakan model deep learning DNN dan memiliki performa yang bagus dengan accuracy sebesar 0.844 dan f1 sebesar 0.865052. Aplikasi Android memiliki mekanisme pemberitahuan berupa suara yang dimainkan ketika pengemudi mengantuk. Selain itu, pada aplikasi Android juga terdapat 2 fungsi tambahan yaitu deteksi tidur dan deteksi gangguan konsentrasi pengemudi. Kedua fungsi tersebut akan mengeluarkan suara ketika terdeteksi untuk memberitahukan kepada pengguna. Dengan adanya aplikasi sistem deteksi kantuk yang dibuat pada penelitian ini, diharapkan dapat mendeteksi tingkat kantuk pengemudi sehingga mengurangi risiko kecelakaan akibat mengantuk.
Deep learning technology can solve many problems that are difficult to solve by ordinary mathematical formulas. One of the problems that can be overcome is the danger due to drowsiness experienced by the driver while driving. In this study, a drowsiness detection system on Android application that uses a smartphone camera is made. The camera is used to obtain facial image feature informations which is right eye aspect ratio, left eye aspect ratio, mouth aspect ratio, percentage of eye closure (PERCLOS), microsleep rate, and yawning rate. These features are obtained by transforming and processing facial landmark points. In this study, it was found that the best method for obtaining facial landmarks points is from Lucas-Kanade optical flow tracking with 5 frames tracked. The features collected can be used to detect drowsiness by utilzing a deep learning model that has been trained with data collected from 10 volunteers. In this study, there are 2 types of deep learning models that are trained to detect drowsiness that are deep neural network (DNN) and long short-term memory (LSTM). DNN has better overall performance than LSTM. DNN has an accuracy of 0.902538 and f1 of 0.899563. Whereas LSTM has an accuracy of 0.891857 and f1 of 0.892689. The drowsiness detection system Android application is created using the DNN model and has a good performance with an accuracy of 0.844 and f1 of 0.865052. The Android application has a notification mechanism in the form of sound that played when the driver is detected to be drowsy. In addition, the Android application also has an additional function that are sleeping detection and driver distraction detection. Both functions will make a sound when detected to notify the user. With the application of drowsiness detection system made in this study, it is expected to detect the level of drowsiness of the driver thereby reducing the risk of accidents due to drowsiness.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jacob Teofilus Gamaliel
Abstrak :
Asuransi adalah layanan yang disediakan oleh perusahaan asuransi untuk memastikan risiko kerugian finansial bagi seseorang atau kelompok yang membayar premi berdasarkan perjanjian. Terdapat berbagai macam produk asuransi, di antaranya adalah asuransi perjalanan. Asuransi perjalanan adalah produk asuransi dalam mengalihkan risiko kerugian finansial akibat kecelakaan dalam perjalanan. Perusahaan asuransi harus dapat melakukan analisis yang tepat untuk memprediksi apakah pembayar premi akan mengajukan klaim atau tidak di masa depan, untuk meminimalkan kerugian yang diderita perusahaan. Dari sudut pandang machine learning, masalah prediksi klaim adalah masalah klasifikasi. Deep Neural Networks (DNN) adalah salah satu metode machine learning terbaru untuk menyelesaikan masalah prediksi klaim. Namun, DNN tidak memberikan akurasi yang lebih baik daripada Neural Network (NN) yang merupakan model dasarnya. Dalam tulisan ini, Regularization Learning Netowrk (RLN) yang merupakan pengembangan dari DNN dengan teknik regularisasi RLNs dianalisis untuk prediksi klaim dalam asuransi perjalanan. Simulasi menunjukkan bahwa RLN meningkatkan kinerja DNN dan memberikan akurasi yang lebih baik daripada DNN tanpa regularisasi RLNs dan NN standar. ......Insurance is a service provided by an insurance company to ensure the risk of financial loss for a person or group that pays a premium based on the agreement. There are various kinds of insurance products, including travel insurance. Travel insurance is insurance products in transferring the risk of financial loss due to accidents in transit. The insurance company must be able to conduct an appropriate analysis to predict whether the premium payer will file a claim or not in the future, to minimize losses suffered by the company. From a machine learning perspective, the problem of claim prediction is a classification problem. Deep neural networks (DNN) is one of the latest machine learning methods to solve claims prediction problems. However, DNN does not provide better accuracy than standard neural networks (NN). In this paper, the regularization learning network (RLN) which is an extension of DNN with a regularization layer analysed for prediction of claims in travel insurance. Our simulations show that RLN improves DNN performance and provides better accuracy than DNN and NN.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library