Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41 dokumen yang sesuai dengan query
cover
Cahya Mukti Setiyanto
"Elektroda boron-doped diamond (BDD) memiliki banyak keunggulan seperti jendela potensial lebar, arus latar rendah, inertness tinggi dan stabilitas. Modifikasi permukaan BDD dengan nanopartikel emas dilakukan dalam penelitian ini untuk meningkatkan konduktivitas dan sensitivitasnya sebagai sensor oksigen. Sintesis nanopartikel emas (AuNPs) dilakukan dengan menggunakan allicin, yang diperoleh dengan isolasi dari bawang putih dengan cara mengeluarkan ekstrak, sebagai agen penutup karena allicin memiliki kelompok fungsional Sulfur (S) untuk bereaksi dengan emas dan ikatan rangkap untuk direaksikan untuk memasang BDD permukaan di bawah radiasi sinar UV. Allicin yang diperoleh dikarakterisasi menggunakan Fourier-Transform Infrared Spectroscopy (FTIR), sedangkan emas yang disintesis dikoreksi dengan spektrofotometer UV-VIS, Particle Size Analyzer (PSA), dan Transmission Electron Microscopy (TEM). Hasil penelitian menunjukkan bahwa ukuran rata-rata AuNPs adalah sekitar 8.893 nm. Lebih lanjut, modifikasi permukaan BDD oleh AuNP yang disintesis ditandai oleh Scanning Electron Microscopy - Energy Dispersive Spectroscopy (SEM-EDS), menegaskan bahwa 0,6% dari AuNP dapat dipasang pada permukaan BDD. Aplikasi AuNPs yang dimodifikasi BDD sebagai elektroda kerja untuk sensor oksigen dan sensor Biokimia Oxygen Demand (BOD) menunjukkan kinerja yang baik dengan rasio sinyal-ke-latar belakang 4,6, batas deteksi oksigen terlarut 0,0537 ppm dan batas deteksi BOD 0,1214 ppm.

Boron-doped diamond (BDD) electrodes have many advantages such as wide window potential, low background current, high inertness and stability. Surface modification of BDD with gold nanoparticles was carried out in this study to improve its conductivity and sensitivity as an oxygen sensor. Synthesis of gold nanoparticles (AuNPs) is carried out using allicin, which is obtained by isolation from garlic by extracting extracts, as a cover agent because allicin has a functional group of Sulfur (S) to react with gold and double bonds to be reacted to attach the BDD surface under UV radiation. Allicin obtained was characterized using Fourier-Transform Infrared Spectroscopy (FTIR), while the synthesized gold was corrected with UV-VIS spectrophotometer, Particle Size Analyzer (PSA), and Transmission Electron Microscopy (TEM). The results showed that the average size of AuNPs was around 8,893 nm. Furthermore, the modification of BDD surfaces by synthesized AuNP was marked by Scanning Electron Microscopy - Energy Dispersive Spectroscopy (SEM-EDS), confirming that 0.6% of AuNP could be mounted on BDD surfaces. Applications of BDD modified AuNPs as working electrodes for oxygen sensors and Biochemical Oxygen Demand (BOD) sensors show good performance with a signal-to-background ratio of 4.6, a dissolved oxygen detection limit of 0.0537 ppm and a BOD detection limit of 0.1214 ppm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Spdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirul Umam
"Akrilamida merupakan senyawa kimia berbahaya yang bersifat karsinogenik terhadap manusia. Akrilamida dapat terbentuk dari proses pemanasan suhu tinggi pada makanan yang kaya akan kandungan karbohidrat. Di dalam darah manusia yang terpapar akrilamida ditemukan adanya ikatan kovalen yang terbentuk antara ikatan rangkap pada akrilamida dengan ?-NH2pada N-terminal yang ada pada gugus valin di hemoglobin. Adanya ikatan tersebut menjadi dasar penggunaan hemoglobin sebagai biosensing dalam biosensor elektrokimia senyawa akrilamida. Elektroda boron doped diamond(BDD) dimodifikasi menggunakan hemoglobin untuk memperoleh elektroda dengan sifat selektifitas, sensitifitas, dan reuseable yang baik sebagai sensor akrilamida. Untuk meningkatkan nilai afinitas BDD terhadap hemoglobin, BDD dimodifikasi dengan menggunakan nanopartikel emas yang melalui gugus oksigen atau gugus nitrogen pada permukaan BDD. Perbandingan juga dilakukan jika hemoglobin dimodifikasikan pada permukaan elektroda emas. Dari pengukuran siklik voltametri yang dilakukan diperoleh respon arus optimum pada pH 5 (Larutan buffer asetat 0.1 M). Arus yang diperoleh linear pada range konsentrasi akrilamida 5 sampai 50 µM dengan limit deteksi 5,1436 µM

Acrylamide is reported as a chemical compound that is carcinogenic to human. Acrylamide can be formed from high-temperature heating process on foods that have high carbohydrate content. In human blood, exposingto acrylamide was found to form the bond between the double bond of acrylamide and ?-NH2 group of N-terminal valine of hemoglobin. In this work, we employed this behavior to developan electrochemical biosensor of acrylamide. Boron-doped diamond (BDD) electrode was modified by using hemoglobin to obtain an electrode with the nature of selectivity, sensitivity, and reusable. To increase the affinity of BDD to hemoglobin, proir to use the BDD was modified by gold nanoparticles through oxygen or nitrogen sites of BDD. Comparison was also performed using hemoglobin-modified gold electrodes. Cyclic voltammetry observed optimum responses at pH 5 (0.1 M sodium acetate buffer). The responsesare linear to the acrylamide concentration range of 5-50 µM with estimated detection limits of 5.1436 µM.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63264
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ryan Cipta
"Transmisi elektron mikroskop (TEM) dan ukuran partikel analyzer (PSA) adalah instrumen umum untuk penentuan distribusi ukuran nanopartikel emas (Aunp). Namun, teknik ini tidak selalu berlaku karena harga alat dan biaya pemeliharaan yang mahal. Penelitian ini
melaporkan pengaruh arus transien pada tumbukan aktif elektrokimia antara individu Aunp dengan permukaan mikroelektroda boron-doped diamond (BDD). Hal ini juga diketahui bahwa hidrogen peroksida (H2O2) tidak aktif di permukaan BDD. Namun, dengan adanya Aunp reaksi
oksidasi-reduksi H2O2 terjadi. Selanjutnya, ukuran Aunp mempengaruhi arus yang dihasilkan. Oleh karena itu, korelasi antara transien saat ini dengan ukuran AuNPs dapat digunakan untuk menganalisis distribusi ukuran Aunp. Aunp telah berhasil disintesis menggunakan metode
reduksi HAuCl4 oleh sodium sitrat. Ukuran AuNP dari 10-100 nm sudah disiapkan. Korelasi antara arus transient yang dihasilkan oleh reaksi reduksi H2O2 oleh tumbukan Aunp dipermukaan mikroelektroda BDD dengan ukuran nanopartikel yang diukur dengan menggunakan TEM dan PSA, dapat dideterminasi bahwa metode ini dapat diterapkan untuk penentuan distribusi ukuran nanometal.

Transmission electron microscopy (TEM) and particle size analyzer (PSA) are the general instruments for the determination of size distribution of gold nanoparticle (AuNP). However, these techniques are not always applicable because the price of instrument and the cost of maintenance are expensive. This research reports the effect of transient currents on electrochemical active collisions between individual AuNP with the surface of boron-doped diamond (BDD) microelectrodes. It is well known that hydrogen peroxide (H2O2) is inactive at the surface of BDD. However, in the presence of AuNP oxidation-reduction reaction of H2O2 occurs. Furthermore, the size of AuNP affects the current generated. Therefore, correlation
between the current transients with AuNPs size can be used to analyze the distribution of AuNP size. AuNP has been successfully synthesized using the method of reduction HAuCl4 by sodium citrate. The size of 10-100 nm AuNPs can be prepared. Correlation between with the size of the nanoparticles measured by TEM and PSA with the current transient generated by the reduction
reaction of H2O2 with AuNP collision at BDD microelectrodes suggested that the method can be
applied for the determination of nanometal size distribution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T47543
UI - Tesis Open  Universitas Indonesia Library
cover
Listya Eka Anggraini
"Akrilamida dikenal bersifat karsinogen dan neurotoxin. Salah satu pengembangan metode deteksi akrilamida adalah dengan menggunakan biosensor berbasis hemogloin karena metode ini praktis, sensitif, dan cepat. Untuk itu dibutuhkan permukaan elektroda yang aktif, seperti Au dan Pt. Sudah banyak dilakukan penelitian membuat sensor akrilamida, namun tingkat kestabilan dan sensitifitas elektrodanya masih terbilang rendah. Pada penelitian ini dilakukan pembuatan biosensor akrilamida menggunakan elektroda boron-doped diamond BDD termodifikasi emas dan hemoglobin.
Teknik pembibitan kimia wet-chemical seeding dan elektrokimia electrochemical overgrowth of seeds dilakukan untuk memodifikasi elektroda BDD dengan emas. Karakterisasi dengan SEM-EDS menunjukkan bahwa sebanyak 12,74 emas berhasil terdeposisi di permukaan BDD. Dengan menggunakan Hb konsentrasi 0,25 mM, sensor akrilamida yang dibuat memiliki linearitas yang tinggi R2 = 0,9901 pada rentang konsentrasi 0,6 sampai 6 M dengan perkiraan LOD mencapai 0,845 M. Pengukuran kandungan akrilamida dalam sampel kopi menggunakan sensor ini memberikan hasil yang mendekati dengan hasil pengukuran menggunakan HPLC.

Acrylamide is known as carcinogenic and neurotoxin substrates. An alternative method for acrylamide detection is by using hemoglobin based biosensors, because it is a simple, rapid, and sensitive method. In this case, an active electrode surface, such as Au and Pt is necessary. Many studies have been done to create the acrylamide sensor. Unfortunatelly, the stability and the sensitivity of the electrodes were still poor. In this research, the electrodes for biosensor of acrylamide was prepared by modifying boron doped diamond BDD with gold and hemoglobin.
Wet chemical seeding technique followed by electrochemical overgrowth of seeds was performed to modify BDD electrodes with gold. The characterization with SEM EDS showed that gold could over 12.74 of the BDD surface. By immobilizing Hb with the concentration of 0.25 mM on the surface of the modified BDD, the linear calibration of the prepared acrylamide sensor was high R2 0.9901 in the concentration range of 0.6 to 6 M with an estimated LOD of 0.845 M. Measurement of acrylamide content in coffee samples using this sensor gives approach results to measurement results using HPLC.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Aisyah Fauzillah
"Arsenik adalah salah satu elemen paling berbahaya di permukaan bumi. Kontaminan arsenik anorganik dilaporkan menyebabkan masalah serius dalam kesehatan manusia di seluruh dunia. Berlian boron-doped yang dimodifikasi oleh emas nanopartikel (AuNPs-BDD) dapat digunakan sebagai sensor arsenik dengan sensitivitas tinggi. Dalam karya ini, sintesis nanopartikel emas (AuNPs) dilakukan menggunakan agen capping allyl mercaptan (C3H6S) karena emas afinitas tinggi untuk kelompok yang mengandung unsur N atau S. Selain itu, allyl mercaptan memiliki ikatan rangkap yang dapat digunakan untuk membentuk ikatan dengan permukaan BDD. Karakterisasi AuNP menggunakan spektrofotometer UV-Vis menghasilkan panjang gelombang spesifik nanopartikel emas pada kisaran 510-580 nm, sedangkan karakterisasi menggunakan Transmission Electron Microscopy (TEM) menunjukkan ukuran distribusi rata-rata AuNPs pada 6,2 ± 2,31 nm dan Particle Size Analyzer (PSA) menunjukkan ukuran rata-rata AuNPs pada 29,51 ± 5, 31 nm. AuNP yang disintesis diendapkan pada permukaan elektroda BDD dengan metode pencelupan di bawah sinar UV (λ = 254 nm) dan dikarakterisasi menggunakan X-Ray Photoelectron Spectroscopy (XPS) dan Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). Pemeriksaan sensor arsenik dilakukan dengan menggunakan teknik Anodic Stripping Voltammetry (ASV). Pengukuran As3 + dan As5 + menggunakan BDN (AuNPs-BDD) yang dimodifikasi AuNPs menunjukkan respons saat ini dengan linearitas yang baik (R2 = 0,99) dalam rentang konsentrasi 0-100 μM dengan nilai deteksi batas As3 + dan As5 + dari 0,064 μM dan 0,105 μM.

Arsenic is one of the most dangerous elements on the surface of the earth. Inorganic arsenic contaminants are reported to cause serious problems in human health throughout the world. Boron-doped diamonds modified by gold nanoparticles (AuNPs-BDD) can be used as arsenic sensors with high sensitivity. In this work, the synthesis of gold nanoparticles (AuNPs) is carried out using the capping allyl mercaptan (C3H6S) agent because gold has high affinity for groups containing N or S. elements. Additionally, mercaptan allyl has a double bond that can be used to form bonds with BDD surfaces. AuNP characterization using UV-Vis spectrophotometer produces specific wavelengths of gold nanoparticles in the range 510-580 nm, while characterization using Transmission Electron Microscopy (TEM) shows the average distribution size of AuNPs at 6.2 ± 2.31 nm and the Particle Size Analyzer ( PSA) shows the average size of AuNPs at 29.51 ± 5, 31 nm. The synthesized AuNP was deposited on the surface of BDD electrodes by immersion method under UV light (λ = 254 nm) and characterized using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). Arsenic sensor tests are carried out using the Anodic Stripping Voltammetry (ASV) technique. Measurement of As3 + and As5 + using BDN (AuNPs-BDD) modified with AuNPs shows the current response with good linearity (R2 = 0.99) in the concentration range of 0-100 μM with detection limits of As3 + and As5 + values ​​of 0.064 μM and 0.105 μM.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Nadhira Azzura
"Boron-doped diamond (BDD) merupakan salah satu elektroda berbasis karbon yang memiliki sifat-sifat unggul dibandingkan dengan elektroda karbon lainnya. Tetapi kestabilan yang tinggi membuat modifikasi BDD dengan nanopartikel emas (AuNP) sulit dilakukan. Pada penelitian ini, AuNP disintesis dengan 4-Aminostyrene (C8H9N) sebagai capping agent. Pemilihan 4-Aminostyrene didasarkan pada keberadaan gugus (-NH2) yang memiliki afinitas tinggi pada emas dan dapat menstabilkan AuNP. Selain itu adanya ikatan rangkap di luar cincin benzene pada 4-Aminostyrene diharapkan putus melalui reaksi fotokimia di bawah sinar UV untuk membentuk ikatan kimia yang stabil dengan permukaan BDD dan menghasilkan modifikasi yang stabil. Karakterisasi AuNP dengan spektrofotometer UV-Vis menunjukkan puncak pada daerah panjang gelombang spesifik AuNP yaitu pada rentang 510-580 nm. Karakterisasi dengan TEM menunjukkan rentang diameter AuNP pada 2-10 nm, sedangkan karakterisasi dengan PSA menunjukkan AuNP terkoagulasi pada rentang diameter 100-600 nm. Modifikasi permukaan elektroda BDD dengan AuNP hasil sintesis dilakukan dengan merendam BDD dalam larutan koloid AuNP di bawah radiasi sinar UV selama 6 jam. Karakterisasi elektroda BDD yang telah dimodifikasi AuNP (BDD-AuNP) dengan SEM-EDS menunjukkan bahwa AuNP terdeposisi pada permukaan BDD dengan coverage 2,8% (Wt%). Sementara itu karakterisasi dengan cyclic voltammetry menggunakan larutan 0,1 M Na2SO4 yang men gandung Fe(CN)63- dan Fe(CN)64- (1:1) menunjukkan pergeseran puncak oksidasi reduksi pada BDD sebelum modifikasi dan setelah modifikasi dengan AuNP. Hasil ini membuktikan keberhasilan modifikasi dengan AuNP untuk meningkatkan konduktivitas pada elektroda BDD.

Boron-doped diamond (BDD) is one of the carbon-based electrodes which has superior properties compared to other carbon electrodes. However, its high stability makes the BDD modification with gold nanoparticles (AuNP) is difficult to be performed. In this study, AuNP was synthesized with 4-Aminostyrene (C8H9N) as the capping agent. 4-Aminostyrene was selected because of the presence of an amine group (-NH2) which has a high affinity to gold to stabilize the AuNP. Besides, the presence of a double bond outside the benzene ring in 4-Aminostyrene was expected to break through photochemical reactions under the UV light to form a stable chemical bond with the surface of BDD to produce a stable modification. The characterization of the synthesized AuNP by using a UV-Vis spectrophotometer showed a peak in the specific wavelength region of AuNP at around 510-580 nm. The characterization with TEM showed the AuNP diameter range at 2-10 nm, while the characterization with PSA showed the coagulated AuNP in the range of diameter 100-600 nm. Modification of the surface of BDD electrodes with the synthesized AuNP was performed by immersing BDD in the colloidal AuNP under UV radiation for 6 h. Characterization of the AuNP-modified BDD (BDD-AuNP) by using SEM-EDS showed that AuNP was deposited on the surface of BDD with the percent coverage of 2.8% (Wt%). Meanwhile, characterization with cyclic voltammetry in 0.1 M Na2SO4 solution containing Fe(CN)63- and Fe(CN)64- (1: 1) showed a shift in the oxidation-reduction peaks before modification and after modification by AuNP. The results proved that the modification with AuNP was succeeded to increase the conductivity of BDD electrodes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Syauqillah
"Mikroelektroda hydrogenated boron doped diamond (HBDD) dan oxidized boron doped diamond (OBDD) digunakan dalam studi penentuan distribusi ukuran nanopartikel Pt. Studi dilakukan menggunakan teknik kronoamperometri pada potensial tetap 0,516 V dengan mengamati arus transien yang muncul pada reaksi oksidasi hidrogen peroksida 1 mM dalam phosphate buffer solution (PBS) 50 mM sebagai hasil reaksi elektrokatalitik oleh nanopartikel Pt ketika menumbuk permukaan mikroelektroda. Batas minimum arus transien yang dideteksi oleh mikroelektroda HBDD dan OBDD masing-masing adalah 1,5 dan 2,5 nA. Arus transien yang dihasilkan memiliki korelasi dengan ukuran nanopartikel Pt. Ukuran nanopartikel Pt divariasikan dengan cara memvariasikan konsentrasi NaBH4 yang digunakan dalam pembentukan nanopartikel Pt.
Hasil TEM menunjukkan bahwa kisaran ukuran nanopartikel Pt dengan variasi konsentrasi NaBH4 60, 90, 120, 150 mM masing-masing sebesar 5,33; 5,01; 4,62; dan 4,24 nm. Sementara itu pengukuran dengan teknik amperometri menggunakan mikroelektroda HBDD masing-masing sebesar 5,39; 5,15; 4,72 dan 4,40 nm, sedangkan menggunakan mikroelektroda OBDD masing-masing sebesar 5,36; 5,07; 4,70; dan 4,31 nm untuk nanopartikel Pt dengan NaBH4 60, 90, 120, 150 mM. Pengujian secara statistik dengan uji T menunjukkan bahwa hasil dengan teknik kronoamperometri diperoleh tidak berbeda secara signifikan dengan metode TEM mengindikasikan bahwa metode ini dapat digunakan untuk menentukan diameter nanopartikel Pt.

Hydrogenated boron doped diamond (HBDD) and oxidized boron doped diamond (OBDD) microelectrodes were used in studyabout the determination of Pt nanoparticles size distribution. Chronoamperometry technique was used with a constant potential of 0.516 V to observe the transient currents generatedby the oxidation reaction of 1 mM hydrogen peroxide in 50 mM phosphate buffer solution catalyzed by Pt nanoparticles when attached the surface of microelectrode. The minimum limit of the transient current can be detected by HBDD and OBDD microelektrodes were 1.5 and 2.5 nA respectively. The transient current has correlation with the size of the Pt nanoparticles. Size of Pt nanoparticles was varied by the use of different of NaBH4 to synthesize the nanoparticles.
TEM results showed that the Pt nanoparticles with distribution size of 5.33; 5.01; 4.62; and 4.24 nm, respectively, could be synthesized by using NaBH4 concentrations of 60, 90, 120, 150 mM. On the other hand, the chronoamperomethry techniques using HBDD microelectrode showed Pt nanoparticles size distributions 5.39; 5.15; 4.72; and 4.40 nm, while using OBDD microelectrode showed 5.36; 5.07; 4.70; and 4.31 nm for Pt nanoparticles with NaBH4 concentrations of 60, 90, 120, 150 mM respectively. Statistic examination using T-test resulted no significant differences between the results using amperometry techniques and TEM, indicates that the method using both HBDD and OBDD microelectrodes can be used for the determination of Pt nanoparticle diameter.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55556
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Maghribul Falah
"[ABSTRAK
Elektroforesis kapiler merupakan suatu metode pemisahan senyawa-senyawa berdasarkan perbedaan kecepatan mobilitas ion karena adanya perbedaaan tegangan tinggi yang diberikan. Pendeteksian yang digunakan adalah secara elektrokimia dengan menggunakan elektroda kerja yaitu Boron Doped Diamond (BDD) dengan terminasi Hidrogen yaitu Hydrogenated Boron Doped Diamond (H-BDD) dan sebagai pembanding, digunakan juga elektroda kerja Oxidized Boron Doped Diamond (O-BDD). Elektoda H-BDD digunakan sebagai elektroda kerja karena dapat lebih baik mengukur puncak arus senyawa Adenosin Fosfat yaitu AMP, ADP, dan ATP dibandingkan elektroda O-BDD. Diukur pula Adenin dan Adenosin sebagai data tambahan. Puncak arus ketiga senyawa adenosine fosfat sama yaitu 1,5 Volt sehingga diperlukan metode elektroforesis untuk dapat memisahkannya. Puncak arus tertinggi didapatkan pada kodisi pH 4 dalam larutan penyangga PBS (Phosphate Buffer Saline) dengan menggunakan elektroda H-BDD sedangkan pH 2 dengan menggunakan elektroda O-BDD. Kapiler yang digunakan berupa fused silica dengan diameter dalam yaitu 50 μm dan diameter luar yaitu 150 μm. Tegangan tinggi yang digunakan sebesar 10 kV dengan menggunakan power suplai tegangan tinggi. Perlu dilakukan perbaikan rancangan elektroforesis dan beberapa kendala lain untuk menghasilkan pengukuran yang baik.

ABSTRACT
Capillary electrophoresis is a method of separating compounds by ion mobility speed difference because of the different high voltage supplied. Detection used is electrochemically by using the working electrode is doped Boron Diamond (BDD) with Hydrogen termination, It is Hydrogenated Boron doped Diamond (H-BDD) and as a comparison, the working electrode is used also Oxidized Boron doped Diamond (O-BDD). H-BDD electrode is used as the working electrode as it can better measure the peak flow Adenosine Phosphate compounds are AMP, ADP, and ATP than O-BDD electrode. Adenine and adenosine is measured as well as additional data. The third current peak adenosine phosphate compounds are 1.5 Volt so that the necessary methods of electrophoresis to separate them. Highest peak currents obtained at pH 4 Events in PBS buffer solution (Phosphate Buffer Saline) using H-BDD electrodes while pH 2 using electrodes O-BDD. Capillaries are used in the form of fused silica with a diameter of 50 μm and the outer diameter of 150 μm. High voltage is used at 10 kV using a high voltage power supply. The need to restore the draft electrophoresis and several other obstacles to produce a good measurement., Capillary electrophoresis is a method of separating compounds by ion mobility speed difference because of the different high voltage supplied. Detection used is electrochemically by using the working electrode is doped Boron Diamond (BDD) with Hydrogen termination, It is Hydrogenated Boron doped Diamond (H-BDD) and as a comparison, the working electrode is used also Oxidized Boron doped Diamond (O-BDD). H-BDD electrode is used as the working electrode as it can better measure the peak flow Adenosine Phosphate compounds are AMP, ADP, and ATP than O-BDD electrode. Adenine and adenosine is measured as well as additional data. The third current peak adenosine phosphate compounds are 1.5 Volt so that the necessary methods of electrophoresis to separate them. Highest peak currents obtained at pH 4 Events in PBS buffer solution (Phosphate Buffer Saline) using H-BDD electrodes while pH 2 using electrodes O-BDD. Capillaries are used in the form of fused silica with a diameter of 50 μm and the outer diameter of 150 μm. High voltage is used at 10 kV using a high voltage power supply. The need to restore the draft electrophoresis and several other obstacles to produce a good measurement.
]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Universitas Indonesia, 2015
S60933
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitriana Maharjanti
"Karbon dioksida merupakan salah satu gas rumah kaca yang menyebabkan pemanasan global. Pemanasan global ini dapat mengakibatkan tidak teraturnya cuaca di bumi. Oleh karena itu telah banyak dilakukan penelitian konversi CO2 menjadi senyawaan kimia yang lebih berguna dengan berbagai metode, salah satunya dengan metode elektrokimia. Pada penelitian ini, elektroreduksi CO2 dengan metode elektrokimia menggunakan elektroda kerja Pt-BDD telah berhasil dilakukan. Elektrodeposisi logam Pt pada permukaan elektroda BDD dilakukan dengan metode voltametri siklik menggunakan larutan H2PtCl6. Potensial dan waktu deposisi optimum logam Pt pada permukaan elektroda BDD adalah -0,30 V dan 50s. Deposit Pt dikarakterisasi menggunakan instrumen Scanning Electron Microscopy (SEM) dan Electron Dispersive X-ray Spectroscopy (EDS). Karakterisasi dengan SEM-EDS menunjukkan bahwa Pt terdeposisi dengan ukuran rata-rata sebesar 5μm pada permukaan BDD sebanyak 24,03% (Wt) dan 1,91% (At). Uji pendahuluan dilakukan untuk menentukan potensial reduksi CO2 dengan elektroda kerja Pt. Potensial reduksi CO2 dengan elektroda Pt yang diperoleh pada kondisi optimum larutan TBAP 0,3 M dalam metanol dan waktu pengaliran gas CO2 1,5 jam adalah sebesar -0,56 V. Selanjutnya dilakukan elektroreduksi CO2 pada potensial reduksi tersebut menggunakan metode kronoamperometri dengan elektroda kerja Pt dan Pt-BDD. Hasil elektroreduksi CO2 dikarakterisasi menggunakan instrumen Gas Chromatography-Mass Spectrometry ( GC-MS). Data GC-MS menunjukkan bahwa elektroreduksi CO2 dengan elektroda kerja Pt-BDD menghasilkan asam formiat dengan kelimpahan sebesar 1,988%.

Carbon dioxide is one of gas that caused global warming. That can increasing earth?s temperature. Therefore, many study conversion of CO2 to be another chemist compound that useful by electrochemical method. At this report, the electroreduction of CO2 by eletrochemical method at Pt-BDD was studied. Electrodeposition of Pt on BDD was done by cyclic votametry in H2PtCl6 electrolyte. The optimum potential and time of deposition Pt on BDD are -0,30V and 50s. Charaterization of Pt deposite was used by Scanning Electron Microscopy (SEM) dan Electron Dispersive X-ray Spectroscopy (EDS). SEM-EDS data showed that Pt had deposited with average of size is 5μm on BDD as much as 24.03% (wt) and 1,91% (At). Study of potential reduction of CO2 for determine of potential reduction of CO2 on Pt electrode. Potential reduction of CO2 by Pt electrode at optimum condition, TBAP 0,3 M in methanol and 1,5 hours of bubling CO2 gas, is -0,56 V. Then, electroreduction of CO2 was done on the potential reduction by cronoamperometry method with Pt and Pt-BDD electrodes. Characterization of the product of CO2 was used by Gas Chromatography-Mass Spectrometry (GC-MS). The product of electroreduction CO2 with Pt-BDD electrode is HCOOH as much as 1,988%."
Depok: Universitas Indonesia, 2014
S60391
UI - Skripsi Membership  Universitas Indonesia Library
cover
Isnaini Rahmawati
"Sebagian besar penggunaan energi primer untuk pembangkit energi listrik berasal dari energi fosil (Sujatmiko,2009). Penggunaan energi fosil dapat menimbulkan permasalahan bagi lingkungan. Oleh karena itu, dibutuhkan suatu energi alternatif yang ramah lingkungan untuk mengatasi masalah tersebut. Microbial Fuel Cell (MFC) merupakan salah satu sumber energi alternatif yang prospektif untuk dikembangkan dan ramah lingkungan. Pada penelitian ini, urin digunakan sebagai bahan bakar dan khamir Candida fukuyamaensis digunakan sebagai biokatalis pada sistem MFC. Elektroda yang digunakan pada penelitian ini ialah elektroda BDD. Dilakukan variasi pH dari pH 5-8. Energi listrik optimum dengan densitas arus sebesar 970 mA/m2 dan densitas daya sebesar 109,61 mW/m2 diperoleh pada pH 7. Semakin banyak volume suspensi Candida fukuyamaensis sebanding dengan energi listrik yang dihasilkan terlihat dari densitas arus sebesar 940 mA/m2, 940 mA/m2, 970 mA/m2, dan 970 mA/m2 serta densitas daya 49,82 mW/m2, 72,38 mW/m2, 84,39 mW/m2, dan 109,61 mW/m2 untuk volume Candida fukuyamaensis dari 20 mL hingga 50 mL berturut-turut. Glukosa dan kreatinin merupakan salah satu senyawa dalam urin yang berpotensi menjadi sumber karbon bagi khamir, terlihat dari hasil energi listrik yang dihasilkan lebih besar dibanding menggunakan substrat urin saja. Sistem MFC berbasis urin ini dapat menghasilkan densitas daya yang cukup stabil hingga hari kedua.

The majority of primary energy use for electrical power generation is came from fossil energy (Sujatmiko, 2009).The use of fossil energy could pose problems for the environment. Therefore, it takes an environmentally friendly alternative energy to solve the problem. Microbial Fuel Cell (MFC) is one of the prospective alternative energy and eco-friendly. In this study, urine is used as fuel and Candida fukuyamaensis is used as a biocatalyst on the MFC system. Electrode used in this system is doron-doped diamond electrode. Different pH of anode compartemen (pH 5-8) was used to produce electricity optimally. The maximum power and current density 109,61 mW/m2 and 970 mA/m2 were obtained at pH 7. The increasing volume suspension of Candida fukuyamaensis is proportional to the electrical energy generated. This can be seen from the current density 940 mA/m2, 940 mA/m2, 970 mA/m2, and 970 mA/m2, as well as the power density 49.82 mW/m2, 72.38 mWm2, 84.39 mW/m2, and 109.61 mW/m2 for 20 mL to 50 mL volume of Candida fukuyamaensis respectively. Glucose and creatinine is one of the compounds in urine that potentially be source of carbon for Candida fukuyamanesis due the results from the electrical energy generated is greater than using urine only as substrate. This MFC that use urine as substrat can produce a stable power density until the second day.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63766
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>