Ditemukan 2 dokumen yang sesuai dengan query
Theresia Lidya Octaviani
Abstrak :
Kanker merupakan salah satu penyebab kematian yang paling sering terjadi di seluruh dunia. Salah satu jenis kanker yang dapat mengancam terutama pada wanita adalah kanker payudara. Terlambatnya pendeteksian dini pada penderita kanker payudara menyebabkan sulitnya penanganan untuk proses penyembuhan dan besarnya angka kemungkinan kematian. Metode machine learning banyak diaplikasikan dalam kasus pendeteksian dini karena metode machine learning cukup efektif untuk mendiagnosis suatu penyakit. Pada penelitian ini digunakan metode Bayesian Logistic Regression untuk memprediksi kanker payudara. Metode Bayesian digunakan untuk menghitung bobot dari setiap parameter dari data pada regresi logistik. Data yang digunakan pada penelitian ini adalah data Wisconsin Breast Cancer Database (WBCD, 1992) yang dapat diakses melalui UCI Machine Learning Repository. Berdasarkan hasil uji coba, metode Bayesian Logistik Regression memperoleh akurasi sebesar 96,85%, precision, recall dan F-1 score sebsar 95,44%. Hasil simulasi tersebut menunjukkan bahwa Bayesian Logistic Regression cukup baik untuk membantu praktisi medis dalam mendiagnosis kanker payudara.
......Cancer is one of the most common cause of death in the world. One type of cancer that can be threaten women is breast cancer. The delay in early detection in patient with breast cancer can cause difficulty in recovery process and high mortality rate. Machine learning technique is widely applied in cases of early detection, because machine learning technique is quite effective in diagnose a disease. In this study, the Bayesian Logistic Regression method was used to predict breast cancer. The Bayesian method is used to calculate the weight of each parameter from the data in logistic regression. The data that used in this study is the Wisconsin Breast Cancer Database from UCI Machine Learning Repository. Based on the results of the experiment, Bayesian Logistic Regression method give 96.85% accuracy, and 95,44% precision, recall and F-1 score. These performance results show that the Bayesian Logistic Regression is good enough to help medical experts in diagnosing breast cancer.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Patrecia Alandia Lukman
Abstrak :
Model regresi logistik umum digunakan untuk memodelkan variabel respon berupa variabel kategorik dengan sejumlah variabel prediktor. Kontribusi dari variabel prediktor terhadap variabel respon dinyatakan melalui koefisien regresi (beta), sehingga beta memiliki peran yang penting dalam penggunaan model. Oleh karena itu, perlu dilakukan estimasi nilai beta. Pada skripsi ini dibahas mengenai estimasi beta menggunakan metode Bayesian. Metode Bayesian adalah metode penaksiran parameter yang memanfaatkan gabungan informasi dari data sampel dan informasi terdahulu/prior mengenai karakteristik parameter yang akan ditaksir sehingga metode Bayesian dapat mengatasi masalah jika kualitas data sampel kurang mendukung pengamatan. Prosedur penaksiran parameter tersebut meliputi spesifikasi distribusi prior, digunakan prior non-konjugat, pembentukan fungsi likelihood, dan pembentukan distribusi posterior. Lalu, metode Bayesian Logistic Regression tersebut akan digunakan dalam menganalisa data pasien kanker nasofaring (KNF) pasca radiasi, untuk menilai signifikansi dari komponen skor Zulewski dalam memprediksi ada tidaknya hipotiroid yang merupakan efek samping jangka panjang dari radiasi yang diberikan untuk KNF. Berdasarkan Markov Chain Monte Carlo dengan Gibbs Sampling, diperoleh hasil estimasi yang konvergen. Hasil yang diperoleh adalah tidak ada komponen skor Zulewski yang lebih signifikan antara satu dengan yang lainnya. Diperlukan tambahan informasi dari pengukuran selain komponen skor Zulewski untuk dapat menentukan apakah seorang pasien KNF akan mengalami hipotiroid atau tidak.
Logistic regression models are commonly used to model response variables in the form of categorical variables with a number of predictor variables. The contribution of the predictor variable to the response variable is expressed through a regression coefficient (beta) so that beta has an important role in the use of the model. Therefore, it is necessary to estimate the value of beta. This thesis will discuss the estimated beta using the Bayesian method. Bayesian Method is a parameter estimation method that utilizes a combination of information from sample data and prior information about the characteristics of the parameters to be estimated so that the Bayesian method can overcome the problem if the quality of the sample data does not support observation. The parameter estimation procedure includes the prior distribution specification, which is to use non-conjugate prior, the formation of the likelihood function, and the formation of the posterior distribution. Then, the Bayesian Logistic Regression method will be used in analyzing post-radiation nasopharyngeal cancer (NPC) patient data, to determine the significance of the Zulewski’s score component in predicting the presence or absence of hypothyroidism which is a long-term side effect of radiation given to NPC. Based on Markov Chain Monte Carlo with Gibbs Sampling, a convergent estimate is obtained. The result is that there is no component of Zulewski’s score that is more significant between one another. Additional information is needed from measurements other than the Zulewski’s score component to be able to determine whether a NPC patient will have hypothyroidism or not.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library