Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Alvin Prayuda Juniarta Dwiyantoro
Abstrak :
The routine daily activities that tend to be sedentary and repetitive may cause severe health problems. This issue has encouraged researchers to design a system to detect and record people activities in real time and thus encourage them to do more physical exercise. By utilizing sensors embedded in a smartphone, many research studies have been conducted to try to recognize user activity. The most common sensors used for this purpose are accelerometers and gyroscopes; however, we found out that a gravity sensor has significant potential to be utilized as well. In this paper, we propose a novel method to recognize activities using the combination of an accelerometer and gravity sensor. We design a simple hierarchical system with the purpose of developing a more energy efficient application to be implemented in smartphones. We achieved an average of 95% for the activity recognition accuracy, and we also succeed at proving that our work is more energy efficient compared to other works.
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Alvin Prayuda Juniarta Dwiyantoro
Abstrak :
The routine daily activities that tend to be sedentary and repetitive may cause severe health problems. This issue has encouraged researchers to design a system to detect and record people activities in real time and thus encourage them to do more physical exercise. By utilizing sensors embedded in a smartphone, many research studies have been conducted to try to recognize user activity. The most common sensors used for this purpose are accelerometers and gyroscopes; however, we found out that a gravity sensor has significant potential to be utilized as well. In this paper, we propose a novel method to recognize activities using the combination of an accelerometer and gravity sensor. We design a simple hierarchical system with the purpose of developing a more energy efficient application to be implemented in smartphones. We achieved an average of 95% for the activity recognition accuracy, and we also succeed at proving that our work is more energy efficient compared to other works.
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:5 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fairuz Zahira
Abstrak :
Dengan berkembangnya teknologi, sensor telah menjadi sebuah alat untuk membantu manusia dalam hal apapun, mulai dari kesehatan hingga teknologi. Perkembangan teknologi yang ada saat ini membuat sebuah ponsel cerdas memiliki berbagai macam sensor. Hal ini tentu saja lebih praktis dan nyaman dibandingkan alat sensor yang biasanya tidak nyaman untuk digunakan. Sensor-sensor tersebut nantinya dapat dimanfaatkan dengan mengolah datanya untuk menjadi sebuah Human Activity Recognition. Penelitian ini akan mengevaluasi sebuah aplikasi untuk menyimpan data sensor dengan menggunakan Android Studio dengan menggunakan Support Vector Machine untuk menentukan keakuratan data. Melalui aplikasi pendeteksi sensor, data akan dikumpulkan dari relawan yang melakukan empat macam gerakan. Gerakan itu terdiri dari berjalan, duduk, berdiri, dan berbaring. Data inilah yang kemudian diolah menggunakan metode SVM yang keluarannya menunjukkan tingkat akurasi pengklasifikasian tiap data sensor.
With the development of technology today, sensors have long been a tool to help humans in everything from health to technology. Fortunately, the current technological developments make a smartphone have a variety of sensors. This is, of course, more practical and comfortable than sensor devices which are usually not comfortable to use. These sensors can later be utilized by processing the data to become an Activity Recognition. This study will evaluate an application to store sensor data using Android Studio by using Support Vector Machine to determine the accuracy of the data. Through the sensor detection application, data will be collected from volunteers who carry out four types of movements. The movement consists of walking, sitting, standing, and lying down. This data is then processed using the SVM method.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Geraard Jonathan Raf
Abstrak :
ABSTRAK
Human Activity Recognition merupakan sebuah teknologi yang penting karena dapat diimplementasikan dalam berbagai kebutuhan manusia sehari-hari, seperti mengenai kesehatan manusia. Tujuan dari Human Activity Recognition adalah untuk mengidentifikasi aktivitas manusia yang umum, dimana data yang diterima dapat diteliti lebih lanjut. Seiring perkembangan teknologi, keberadaan komputer dan smartphone sudah tidak dapat dipisahkan lagi dalam kehidupan dan aktivitas manusia. Perkembangan teknologi ini membuat sebuah smartphone dapat memiliki berbagai jenis sensor. Sensor-sensor yang terdapat pada smartphone dapat digunakan untuk melakukan Human Activity Recognition dengan mudah. Contoh sensor pada smartphone yang dapat digunakan untuk melakukan Human Activity Recognition adalah sensor accelerometer untuk mengukur perpindahan. Penelitian ini membuat sebuah aplikasi berbasis Android untuk membaca input dari sensor, diolah dengan library neural network Long Short-Term Memory, lalu menghasilkan output yang sesuai. Hasil output yang dimaksud adalah kondisi dari aktivitas manusia yang diteliti, yaitu kondisi berdiri, berjalan, berlari, duduk, menaiki tangga, dan menuruni tangga.
ABSTRACT
Human Activity Recognition is an important technology because it can be implemented to many human problems, such as healthcare. The main purpose for Human Activity Recognition is to recognize common, simple human activities, where the data received can be researched further. With the development of technology these days, the presence of computer and smartphone cant be removed from daily human activities. This technology development made a smartphone that has been integrated with all kind of sensors. An example of sensor that can be used to do a Human Activity Recognition are accelerometer to measure movement. This research made an Android-based application that will read input from these sensors, processed by neural network Long Short-Term Memor y library, and finally produced the intended output. The outputs are the current activity of user thats been researched on, such as standing, walking, running, sitting, walking upstair, or walking downstair.
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldi Hilman Ramadhani
Abstrak :
Penelitian ini memiliki tujuan untuk mencari model machine learning yang dapat mengenali kegiatan yang dilakukan pengguna ATM, serta mencari algoritma terbaik untuk mengetahui kapan suatu kegiatan pengguna ATM dimulai dan selesai pada suatu video. Terdapat sembilan jenis aktivitas berbeda yang ingin dideteksi. Penelitian ini dapat dibagi dalam dua fase, yaitu fase mencari rentang waktu aktivitas pada video yang disebut fase deteksi aktivitas, dan fase mengenali aktivitas tersebut yang disebut fase pengenalan aktivitas. Pada fase pengenalan aktivitas, penulis mengajukan suatu rancangan arsitektur 3D CNN, serta melakukan eksperimen terhadap parameter pada arsitektur tersebut. Setelah melakukan beberapa eksperimen, didapatkan model terbaik dengan kernel berukuran 3 x 3 x 3, menggunakan input video dengan piksel berukuran 20 x 20 per frame, dan menggunakan dua lapis layer ekstraksi fitur. Pada fase deteksi aktivitas, penulis mengajukan suatu rancangan fungsi deteksi aktivitas, yang mengikuti framework ‘classification lalu post-processing’ yang merupakan salah satu framework untuk deteksi aktivitas (Yao et al., 2018), serta melakukan eksperimen terhadap parameter pada fungsi tersebut. Setelah melakukan beberapa eksperimen, didapatkan performa terbaik dengan parameter teta sebesar 20, dan konstanta C sebesar 365. Pada kedua eksperimen tersebut, terdapat beberapa kesalahan yang dilakukan, sehingga diperlukan eksperimen lanjutan dimana kesalahan tersebut tidak dilakukan. Kesalahan tersebut adalah model kemungkinan besar masih underfit, dan terdapat permasalahan pada pemotongan video manual pada dataset. Setelah menyelesaikan kesalahan tersebut, model untuk fase pengenalan aktivitas mendapatkan akurasi sebesar 93.94%, presisi sebesar 96.36%, recall sebesar 93.94%, dan f-score sebesar 93.69%. Pada sisi lain, dalam fase deteksi aktivitas didapatkan akurasi sebesar 94.44%, presisi sebesar 96.30%, recall sebesar 96.30%, dan f-score sebesar 94.07%.
This research aims to find a machine learning model that can recognize the activities of ATM users, and find the best algorithm to find when each ATM user activity starts and finishes on a video. There are nine different types of activities that this study want to detect. This research can be divided into two phases, namely the phase of detecting for a time span of activity on a video that is called the activity detection phase, and the phase of recognizing that activity that is called the activity recognition phase. In the activity recognition phase, I propose a 3D CNN architecture design, and conduct experiments on the parameters of the architecture. After carrying out several experiments, the best model is obtained with a kernel with dimensions of 3 x 3 x 3, using video input with pixels measuring 20 x 20 per frame, and using two layers of feature extraction layer. In the activity detection phase, I propose an activity detection function, which follows the ‘classification then post-processing’ framework, which is one of the frameworks for activity detection (Yao et al., 2018), and conducts experiments on the parameters of the function. After carrying out several experiments, the best performance was obtained with a theta parameter of 20, and a constant C of 365. In both experiments, there were some errors made, so that further experiments were needed to be done, where the errors were not carried out. The error is that the model is most likely still in underfit phase, and there are problems with manual video clipping on the dataset. After resolving these errors, the model for the activity recognition phase gained an accuracy of 93.94%, a precision of 96.36%, a recall of 93.94%, and an f-score of 93.69%. On the other hand, in the activity detection phase an accuracy of 94.44% is obtained, a precision of 96.30%, a recall of 94.44%, and an f-score of 94.07%.
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kania Nurfitriana Tunggadewi
Abstrak :
Tujuan berkelanjutan dunia yang ditargetkan tercapai pada tahun 2030 menuntut seluruh organisasi untuk menerapkan manajemen berkelanjutan. Perwujudan tersebut diukur melalui implementasi Environment, Social, Governance (ESG) sebagai indikator yang mengukur realisasi praktik berkelanjutan. Namun, kinerja ESG Indonesia masih tertinggal di antara negara-negara dunia karena kekayaan alam dan sosialnya yang menjebak organisasi dalam zona nyaman. Industri telekomunikasi Indonesia berperan strategis dalam membangun konektivitas negara, sehingga kinerja ESG sangat dibutuhkan untuk mendapatkan investasi yang signifikan. Penelitian ini bertujuan untuk mengetahui pengenalan aktivitas ESG pada karyawan Telkom Indonesia dan XL Axiata dengan melakukan survei online dan wawancara mendalam sebagai bagian dari proses triangulasi. Temuan penelitian ini menunjukkan bahwa karyawan kedua perusahaan tersebut memiliki pengenalan yang tinggi terhadap praktik ESG. Hasil penelitian ini mengonfirmasi bahwa pengakuan karyawan dengan pemantauan yang efektif berperan penting sebagai penentu kualitas kinerja ESG. Perusahaan telekomunikasi di Indonesia disarankan untuk meningkatkan kinerja ESG melalui pendekatan langsung dalam meningkatkan pengenalan karyawan terhadap praktik ESG. Pemerintah Indonesia dan otoritas pasar modal diharapkan turut mendukung efektifitas penerapan ESG dengan memaksimalkan fungsi pengawasan untuk meningkatkan kepatuhan ESG di Indonesia. ......The Sustainable Goals, which are targeted to be achieved by 2030, have forced all organizations to implement Environment, Social, and Governance (ESG) as the sustainability measurement. However, Indonesia's ESG performance is still lagging due to its status quo, which trapped the organization in a comfort zone. The Indonesian telecommunications industry plays a strategic role in building the nation's connectivity, which relies on ESG performance to gain significant investment. This research aims to understand the ESG activity recognition of Telkom Indonesia and XL Axiata employees by conducting an online survey and in-depth interviews as part of the triangulation process. The result indicates that employees in both companies have a high recognition of ESG practices. This study confirmed that employee recognition with effective monitoring have a significant role in ESG performance. Telecommunication companies in Indonesia are advised to increase ESG performance through a direct approach in increasing employee recognition of ESG practices. Indonesian government and capital market authorities are expected to maximize the supervisory functions to increase ESG compliance in Indonesia.
Depok: Fakultas Ilmu Administrasi Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
This book focuses on the human aspects of wearable technologies and game design, which are often neglected. It shows how user centered practices can optimize wearable experience, thus improving user acceptance, satisfaction and engagement towards novel wearable gadgets. It describes both research and best practices in the applications of human factors and ergonomics to sensors, wearable technologies and game design innovations, as well as results obtained upon integration of the wearability principles identified by various researchers for aesthetics, affordance, comfort, contextual-awareness, customization, ease of use, ergonomy, intuitiveness, obtrusiveness, information overload, privacy, reliability, responsiveness, satisfaction, subtlety, user friendliness and wearability. The book is based on the AHFE 2018 Conference on Human Factors and Wearable Technologies and the AHFE 2018 Conference on Human Factors in Game Design and Virtual Environments , held on July 21–25, 2018 in Orlando, Florida, and addresses professionals, researchers, and students dealing with the human aspects of wearable, smart and/or interactive technologies and game design research.
Switzerland: Springer Cham, 2019
e20501621
eBooks  Universitas Indonesia Library