Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
A. S. Ekariansyah
"Generation II Nuclear Power Plants (NPPs) have a design weakness as shown by the Fukushima accident. Therefore, Generation III+ NPPs are developed with focus on improvements of fuel technology and thermal efficiency, standardized design, and the use of passive safety system. One type of Generation III+ NPP is the AP1000 that is a pressurized water reactor (PWR) type that has received the final design acceptance from US-NRC and is already under construction at several sites in China as of 2015. The aim of this study is to investigate the behavior and performance of the passive safety system in the AP1000 and to verify the safety margin during the direct vessel injection (DVI) line break as selected event. This event was simulated using RELAP5/SCDAP/Mod3.4 as a best-estimate code developed for transient simulation of light water reactors during postulated accidents. This event is also described in the AP1000 design control document as one of several postulated accidents simulated using the NOTRUMP code. The results obtained from RELAP5 calculation was then compared with the results of simulations using the NOTRUMP code. The results show relatively good agreements in terms of time sequences and characteristics of some injected flow from the passive safety system. The simulation results show that the break of one of the two available DVI lines can be mitigated by the injected coolant flowing, which is operated effectively by gravity and density difference in the cooling system and does not lead to core uncovery. Despite the substantial effort to obtain an apropriate AP1000 model due to lack of detailed geometrical data, the present model can be used as a platform model for other initiating event considered in the AP1000 accident analysis."
Lengkap +
Center for Informatics and Nuclear Strategic Zone Utilization, 2016
607 AIJ 42:2 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
"The Westinghouse AP1000 is a new design nuclear power plant which has implemented the concept of passive system. Even though a passive system may be more reliable than an active one, the possibility of the passive system to fail still exists. In line with this possibility, generic database have been used to study the reliability of the AP1000 passive safety system. However, since the used data are not specific to the AP1000, the results of the analysis will not show its real performance. This study proposes a fuzzy reliability approach to overcome this problem. The proposed fuzzy reliability approach utilizes the concept of failure possibility to qualitatively describe basic event likely occurences and membership functions of triangular fuzzy numbers to quantitatively represent qualitative failure possibilities. A case-based experiment on reliability study of the AP1000 passive safety system involved to mitigate a large break loss of collant accident is used to validate the feasibility of the proposed approach. By comparisons, probabilities of basic events generated by the proposed approach are very close to the ones which have been used by previous reliability studies. This can be observed from the small numbers of relative errors, i.e. between 0.004125 and 0.079635. These results confirm that the fuzzy reliability approach offers a more realistic technique to study the reliability of the AP1000 passive safety system without the need to engage to precise probability distributions of its components which are currently unavailable."
Lengkap +
AIJ 40:2 (2014)
Artikel Jurnal  Universitas Indonesia Library