Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Fadly Ahmad Firdausy
Abstrak :
SARS-CoV-19 merupakan salah satu virus mematikan yang pernah ada, merenggut 6 juta nyawa di seluruh dunia dan 155 ribu di Indonesia yang dimulai dari tahun 2019 akhir sampai 21 Juni 2022. Virus SARS-CoV-19 yang menyebabkan penyakit COVID-19 ini menyebar melalui udara. Untuk mencegah penyebaran COVID-19, Indonesia telah melakukan banyak cara. Walaupun vaksin sudah tersedia, memakai masker dan menjaga jarak menjadi kunci utama dalam penekanan penyebaran virus tersebut. Dengan diwajibkannya pemakaian masker menjadi sebuah tantangan bagi para peneliti untuk mengembangkan sistem pendeteksian masker wajah secara real-time, untuk mengetahui apakah memakai masker atau tidak. Telah banyak penelitian yang dilakukan untuk membuat sistem deteksi wajah yang bertujuan memiliki sistem yang akurat, cepat, dan efektif. Penelitian yang sudah dilakukan memakai metode yang berbeda-beda. Mulai dari RetinaNet, FaceNet, MobileNet, OpenCV, R-CNN, RefineDet dan YOLOv5. Penelitian ini mengembangkan sistem pengembangan masker wajah menggunakan metode YOLOv5 dimana mampu mendeteksi tiga kelas dan juga mendeteksi objek yang banyak. YOLOv5 sendiri merupakan sebuah framework pada machine learning yang digunakan untuk mendeteksi objek secara real-time. Dataset yang digunakan dikumpulkan dari beberapa dataset lain dengan total 4900 gambar. Beberapa skenario dengan parameter dilakukan dan hasil terbaik didapati dengan menggunakan dataset tanpa augmentasi dengan batch-size 32, dengan presisi sebesar 95,9%, recall sebesar 95,7%, dan mAP sebesar 95,7%. ......SARS-CoV-19 is one of the worst viruses that ever exist, claiming the lives of 6 million people globally and 155,000 in Indonesia that started in 2019 until 21 June 2022. SARS-CoV-19 virus that caused COVID-19 is spreading through air. Indonesia has taken a variety of measures to prevent the COVID-19 from spreading. Even while vaccines are available, wearing masks and keeping a safe distance are the most effective ways to prevent the virus from spreading. The mandated use of masks become a challenge for developers to inventing a real-time face mask detection system that can determine whether to employ a mask. Many experiments have been undertaken to improve the effectiveness and accuracy of facial recognition systems, and using a different kind of methods, such as RetinaNet, FaceNet, MobileNet, OpenCV, R-CNN, RefineDet, and YOLOv5. This research will used YOLOv5 algorithm for face mask detection system which can define 3 different classes and multi-object. YOLOv5 is a machine learning framework for object detection in real-time. The datasets that used was collected from several other datasets with total of 4900 images. Different test scenarios with different parameters completed and the dataset without augmentation with batch size 32 scenarios is the best results, with precision score 95,9%, recall score 95,7%, and mAP score 95,7%.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferro Geraldi Hardian
Abstrak :
Deteksi objek merupakan permasalahan populer pada bidang computer vision yang bertujuan untuk mengidentifikasi dan mencari lokasi objek pada suatu citra. Performa metode-metode deteksi objek tentunya dipengaruhi oleh kualitas citra. Di sisi lain, pada kehidupan sehari-hari terdapat citra berkabut. Citra berkabut adalah citra yang diambil dalam kondisi berkabut. Kabut tersebut dapat menghamburkan sinar cahaya dan menyebabkan citra yang diambil mengalami penurunan kualitas. Dataset-dataset citra yang populer digunakan untuk deteksi objek juga biasanya mengasumsikan citra diambil pada kondisi tanpa kabut. Oleh karena itu kebanyakan metode deteksi objek pada umumnya tidak dapat berperforma dengan baik pada citra berkabut. YOLOv4 merupakan arsitektur deteksi objek state-of-the-art yang memiliki performa tinggi baik dari segi akurasi dan kecepatan. Penelitian ini bertujuan untuk menguji kapasitas YOLOv4 dengan citra yang berkabut dan juga mencari skenario pelatihan terbaik bagi YOLOv4 untuk mendeteksi objek pada citra berkabut. Skenario pelatihan yang diusulkan ada tiga, pelatihan hanya dengan citra tanpa kabut, pelatihan hanya dengan citra berkabut, dan pelatihan dengan kedua tipe citra. Pengujian dilakukan pada dataset Hazy Series dimana permasalahan utamanya adalah untuk mendeteksi satu buah objek Macbeth ColorChecker yang ada pada setiap citra. Hasil penelitian menunjukan bahwa kabut memiliki pengaruh yang besar pada model yang tidak dilatih dengan citra berkabut. Selain itu, ditunjukan bahwa model YOLOv4 yang dilatih dengan citra berkabut dan citra tanpa kabut memiliki performa terbaik, dengan akurasi 0,88 dan Intersection of Union (IOU) 0,71 untuk dataset Hazy. ......Object detection is a well known problem in the computer vision field that aims to identify and locate objects in images. The performance of object detection methods is influenced by the quality of the images. However, in real world situations, it is possible to have hazy images. Hazy images are images that are taken in hazy conditions. Haze occurs because of scattering light in a medium that has micro-particles and causes the quality of the image to worsen. Well known object detection datasets also commonly assume that the images are taken in haze-free conditions. As a result, most object detection methods cannot perform well when faced with hazy images. YOLOv4 is a state-of-the-art object detection architecture that has high performance in both accuracy and speed. This research aims to test YOLOv4 capability in handling hazy images while also searching for the best training scenario for YOLOv4 to detect object in hazy images. There are three proposed training scenarios, they are training with only haze-free images, training with only hazy images and training with both. Evaluation is done on Hazy Series dataset where the main task is to detect one Macbeth ColorChecker object in each image. Research’s results indicate that haze has a big effect on models that are not trained with hazy images. They also indicate that the YOLOv4 model that is trained with both haze-free images and hazy images has the best performance, with an accuracy of 0,81 and Intersection of Union (IOU) of 0,71 for hazy images.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Khaerul Naim Mursalim
Abstrak :
Pesawat tanpa awak (Unmanned Aerial Vehicle atau disingkat UAV) adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh secara autopilot. Penggunaan terbesar dari pesawat tanpa awak ini adalah dibidang militer untuk pengintaian, pengawasan, dan penyerangan. Dalam mendeteksi sebuah objek yang bergerak secara real-time oleh sebuah UAV, terdapat proses pengolahan sinyal yang kompleks dibandingkan apabila objeknya dalam keadaan diam. Ada beberapa masalah yang terdapat dalam proses deteksi objek bergerak pada UAV yang disebut uncertainty constraint factor (UCF) yaitu lingkungan, jenis objek, pencahayaan, kamera UAV, dan pergerakan (motion) objek. Salah satu masalah praktis yang menjadi perhatian beberapa tahun ini adalah analisis pergerakan (motion analysis). Pergerakan (Motion) dari sebuah objek pada setiap frame membawa banyak informasi tentang piksel dari objek bergerak yang memainkan peranan penting sebagai image descriptor. Pada tesis ini digunakan algoritma SUED (Segmentation using edge based dilation) untuk mendeteksi objek bergerak. Inti dari algoritma SUED adalah mengkombinasikan frame difference dan proses segmentasi secara bersama untuk mendapatkan hasil yang optimal dibanding dengan menggunakannya secara terpisah. Hasil simulasi menunjukkan peningkatkan performansi algoritma SUED dengan menggunakan kombinasi wavelet dan sobel operator pada deteksi tepinya yaitu jumlah frame untuk true positive meningkat sebesar 41 frame, kemudian false alarm rate yang didapatkan menurun menjadi 7 % dari 24 % apabila hanya menggunakan sobel operator. Kombinasi kedua metode tersebut juga dapat meminimalisir noise region yang mengakibatkan kesalahan dalam proses deteksi dan pelacakan. Hasil simulasi pelacakan objek bergerak dengan metode kalman filter bisa dilihat pada beberapa sampel yang diuji menunjukkan adanya penurunan kesalahan (error) centroid antara hasil deteksi dan hasil pelacakan objek bergerak. ...... An unmanned aerial vehicle (UAV), commonly known as a drone and also referred by several other names is an aircraft without a human pilot aboard. The flight of UAVs may be controlled either autonomously by onboard computers or by the remote control of a pilot on the ground or in another vehicle. Unmanned aerial vehicle (UAV) usually is used in military field for reconnaissance, surveillance, and assault. To detect a moving object in real-time, there are complex processes than to detect the object that does not moving. There are some issues that faced in detection process of moving object in UAV, called constraint uncertainty factor (UCF) such as environment, type of object, illumination, camera of UAV, and motion of the object. One of the practical problems that become concern of researcher in the past few years is motion analysis. Motion of an object in each frame carries a lot of information about the pixels of moving objects which has an important role as the image descriptor. In this thesis, we use SUED (Segmentation using edge-based dilation) algorithm to detect moving objects. The concept of the SUED algorithm is combining the frame difference and segmentation process to obtain optimal results than using them separately. The simulation results show the performance improvement of SUED algorithm using combination of wavelet and Sobel operator on edge detection, the number of frames for a true positive increased by 41 frames, then the false alarm rate decreased to 7% from 24% when only using Sobel operator. The combination of these two methods can also minimize noise region that effect detection and tracking process. The simulation results for tracking moving objects by Kalman filter show that there is error decreasing between detection and tracking process.
Depok: Fakultas Teknik Universitas Indonesia, 2015
T45337
UI - Tesis Membership  Universitas Indonesia Library
cover
Alfarih Faza
Abstrak :
Bencana merupakan hal yang mengancam nyawa manusia dan seringkali memakan korban. Ketika terjadi bencana, SAR dengan sigap mencari, menolong korban, dan memetakan lingkungan dengan cepat. Namun pada waktu-waktu tersebut merupakan saat yang berbahaya untuk mencari korban dan rawan bertambahnya korban. Quadcopter diaplikasikan untuk membantu mencari korban bencana. Pada Quadcopter disematkan sebuah kamera untuk mencari korban. Selama proses pencarian kamera akan mengambil gambar dan mendeteksi korban. Deteksi objek SSD dengan beberapa modifikasi digunakan untuk mendeteksi korban yaitu objek manusia. SSD modifikasi memiliki kemampuan waktu deteksi sebesar 214.37 ms dan tingkat presisi 99.7%. Selanjutnya, quadcopter akan mendekati objek yang terdeteksi. Pengendalian quadcopter untuk mendekati objek menggunakan Proportional Integral Derivative. Selama proses sistem merekam sensor IMU dan GPS pada quadcopter untuk mendapatkan lintasan quadcopter. ......Disaster is jeopardize for human being and oftentimes cost a risk of human life. After a disaster happened, SAR would be deployed to search victim, help them, and mapping disaster’s area quickly. However, after a disaster happened is a dangerous time to find the victim and prone to more risk of human life. Quadcopter used to help find the victim. The quadcopter is attached a camera to detect the victim. During the finding process, camera will capture an image detect of victim. SSD object detection is used to detect human object with a modification to yield more detection accuracy. Modified SSD have detection time performance 214.37 ms and precision 99.7%. Then quadcopter approach to the detected object. The quadcopter approaching process to object by Proportional-Integral-Derivative (PID). During this process, IMU Sensor and GPS of quadcopter are recorded to be processed and gathered the quadcopter trajectory.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Budi Satria
Abstrak :
Dalam proses berkendara, pengemudi memiliki keterbatasan akan informasi selain dari panel instrumen (dashboard) dan penglihatan mereka, sehingga selalu terdapat resiko bahwa pengemudi lengah dan melakukan kesalahan. Untuk membantu pengemudi, salah satu pengembangan terkini di industri otomotif adalah Driver Assistence System atau DAS, yang ditujukan untuk membantu dengan cara memberikan informasi yang komprehensif mengenai kondisi kendaraan maupun kondisi sekitar kendaraan. Informasi yang didapatkan dapat berupa data kendaraan melalui sensor internal, serta data sensor eksternal seperti Kamera. Sebuah kendala dalam menelaah informasi dari Kamera adalah kemampuan untuk mendeteksi jalan dan mengidentifikasi objek yang ada di sekitar, yang umumnya memerlukan biaya komputasi yang cukup besar, sehingga masih tergolong kurang aksesibel. Dalam penelitian ini, dikembangkan sebuah rancangan sistem gabungan perangkat elektronik dan software, dengan kemampuan membaca data internal kendaraan melalui Sensor Grabber, serta menerima dan menelaah data visual dari Kamera. Algoritma deteksi jalan dan pendeteksian objek dikembangkan menggunakan teknik Image Processing serta Deep Neural Network atau Deep Learning. Data kemudian dapat ditampilkan secara visual melalui Graphical User Interface (GUI) yang dikembangkan dengan bahasa Python. Sistem dilatih dengan sampel berjumlah 816 gambar. Setelah melakukan pengujian, data internal kendaraan dapat diperoleh secara real-time, pendeteksian jalan dapat dilakukan dengan tingkat akurasi sebesar 84.96%, dan objek di sekitar kendaraan dapat diprediksi serta diketahui jarak dan posisinya menggunakan Deep Learning dengan tingkat kepresisian hingga 63.6%, dengan waktu komputasi total 121.68ms. ......During driving, the driver does not have much information regarding the vehicle and its surroundings aside from the instrument panel and their own eyes, therefore there is always the risk of getting caught off-guard and making a mistake. To assist the driver, one of the current breakthroughs in the industry is Driver Assistance System (DAS), which is meant to help drivers by giving them comprehensive information regarding their vehicle or its surroundings. The given information can be the vehicle's data from internal sensors, and data from external sensors such as Cameras. A problem regarding analyzing visual data is how to detect road edges and identify the surrounding objects, which usually requires a sizable amount of computing power, therefore causing the technology to still remain less accessible to the public. In this research, a system consisting of Electronics and software with the ability to retrieve vehicle data via a Sensor Grabber, as well as obtain and analyze visual data via a camera is designed. A Road Edge Detection an Object Detection Algorithm is developed with Image Processing and Deep Neural Network or Deep Learning Techniques. The data is then visualized through a Graphical User Interface (GUI) developed in Python. The system is trained using a sample of 816 images. After a testing process, the internal data of the vehicle can be retrieved in real-rime, road edge detection can be achieved with 84.96% accuracy, and object detection with distance calculation using Deep Learning can be done with 63.6% accuracy, using total computation time of only 121.68ms.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Abraham Bismo Kristanto
Abstrak :

Seiring dengan perkembangan bidang computer vision terdapat lebih banyak solusi yang dapat diimplementasikan untuk bidang sehari-hari. Salah satu bidang yang paling erat dengan kegiatan sehari-hari adalah kegiatan mengkonsumsi makanan. Dalam memperhatikan pola makan, penting dilakukan proses mengidentifikasi jenis makanan yang dikonsumsi. Dengan memanfaatkan perkembangan model machine learning deteksi objek yang bekerja secara waktu langsung, YOLOv5 dapat digunakan untuk melakukan deteksi objek untuk dapat mengidentifikasi berbagai jenis makanan dalam suatu gambar. Dengan menggunakan YOLOv5, deteksi terhadap makanan yang kerap kali dikonsumsi oleh masyarakat Indonesia dapat dilakukan dan ditingkatkan akurasinya dengan pemrosesan gambar hingga mencapai nilai mAP 94,3%.  Penggunaan implementasi model ini dalam aktivitas sehari-hari dapat memberikan nilai tambah kepada orang-orang yang ingin lebih memahami jenis makanan yang dikonsumsinya. Dari hasil pengujian user experience yang dilakukan terhadap aplikasi, hasil perbandingan terhadap benchmark mengindikasikan bahwa aplikasi memiliki kualitas penggunaan di atas rata-rata dengan nilai 1,37 untuk daya tarik, 1,58 untuk kejelasan, 1,23 untuk efisiensi, 1,38 untuk ketepatan, 1,13 untuk stimulasi, dan 1,01 untuk kebaruan. ...... With the advent of computer vision there are more solutions that can be implemented in everyday life. One of the areas most closely related to daily activities is the activity of consuming food. In paying attention to diet, it is important to identify the type of food consumed. By leveraging the development of object detection machine learning models that work in real time, YOLOv5 can be used to perform object detection to identify different foods within a single image. By using YOLOv5, detection of foods that are often consumed by Indonesian people can be carried out and the accuracy is increased by image processing up to a value of mAP 94.3%. The use of this model's implementation in daily activities can provide added value to people who want to better understand the types of food they consume. From the results of user experience testing carried out on the object detection application, the results of comparisons against benchmarks indicate that the application has above average usage quality with a value of 1.37 for attractiveness, 1.58 for clarity, 1.23 for efficiency, 1.38 for accuracy, 1.13 for stimulation, and 1.01 for novelty.

Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Adnan Padhilah
Abstrak :
Makalah ini menjelaskan metode pelacakan objek bergerak berdasarkan prediksi 1 hingga 5 langkah di depan. Prediksi menggunakan jaringan syaraf tiruan dengan metode propagasi balik untuk melatih jaringan. Objek bergerak yang digunakan dalam percobaan adalah bola tenis meja kecil. Struktur JST memiliki enam neuron input dan lima neuron output dengan sepuluh neuron di lapisan tersembunyi. Menggunakan data 70 dari posisi pergerakan objek untuk pelatihan, dan 30 data untuk menguji prediksi posisi bola. Itu menunjukkan bahwa pelatihan ANN dapat mencapai berarti kesalahan persegi MSE sekecil 0,0091 untuk koordinat X dan 0,0012 untuk koordinat Y. Pada pengujian prediksi posisi bola, ditunjukkan bahwa metode dapat mencapai MSE sebesar 4,72 untuk koordinat X dan MSE sebesar 2,48 untuk koordinat Y.
This paper described a method of tracking a moving object based on 1 to 5 step ahead prediction. The prediction was using the artificial neural network with back propagation method for training the network. The moving object used in the experiments is a small table tennis ball. The ANN structures have six inputs neurons and five outputs neurons with ten neurons in the hidden layer. Using 70 data of the object movement positions for training, and 30 data for testing the prediction of the ball positions. It was shown that the training of the ANN can achieved means square error MSE as small as 0.0091 for the X coordinate and 0.0012 for the Y coordinate. At the ball position prediction testing, it was shown that the method can achieved the MSE of 4.72 for X coordinate and MSE of 2.48 for Y coordinate.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muflih Fathan Qariba
Abstrak :
Kemacetan masih menjadi masalah besar di Jakarta, untuk dapat menyelesaikan masalah tersebut, dapat dilakukan monitoring atau pemantauan pada jalan terhadap kecepatan kendaraan dan kepadatan jalan. Untuk mendeteksi objek digunakan model Single Shot Multibox Detection (SSD) yang merupakan model pada deteksi objek yang menggunakan metode single shot. Objek merupakan kendaraan yang diambil dari video yang direkam menggunakan kamera CCTV publik yang berada di Jakarta. Hasil yang diberikan sistem cukup baik dengan rata-rata performa yang diberikan sebesar 20.419 FPS dan rata-rata akurasi 73.569 persen dengan model SSD512 dan GPU Tesla P100.
Traffic jam is still one of the main problems in Jakarta, it happens every day. To solve this problem, we could monitor the road to calculate vehicles speed and road density. To achieve this, we used SSD to detect objects (vehicle) on Jakartas road which we get from public IP Camera. As a result, the program quite useful for monitoring roads condition in real time. As the result, performance system quite good with 20.419 FPS and 73.569 accuracy using SSD512 as model and Tesla P100 as GPU.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nuryasin
Abstrak :
Kecerdasan buatan (artificial intelligence, AI) merupakan teknologi yang sedang berkembang dengan cepat pada masa ini. Adanya teknologi AI membuat banyak permasalahan sederhana dan kompleks dapat diatasi dengan program komputer. Salah satu penerapan dari teknologi AI yang memiliki perkembangan yang besar adalah pada computer vision, yang mana dapat dibuat program yang dapat mendeteksi dan mengklasifikasi objek pada suatu gambar. Pada bidang ini, computer vision dapat digunakan untuk mendeteksi rokok. Algoritma dapat dibuat untuk mengetahui jika ada objek rokok dan lokasi dari rokok tersebut pada gambar. Hal ini dapat berguna untuk menyensor rokok pada media video yang dikonsumsi oleh anak-anak. Pada media video, biasanya sensor dilakukan dengan cara manual dan dengan bantuan tracking. Cara ini dapat melelahkan karena walaupun dengan tracking, harus ada orang sebagai pendeteksi yang menunjukkan lokasi objek rokok secara berkala. Terdapat banyak arsitektur dan model algoritma untuk deteksi objek, salah satunya adalah YOLOv8 (You Only Look Once version 8). YOLOv8 adalah versi terbaru dari algoritma YOLO, yang mana merupakan salah satu algoritma state-of-the-art dalam deteksi objek. YOLO merupakan model dari Convolutional Neural Network (CNN) yang melakukan deteksi dengan konsep single stage detector, yaitu algoritma ini melakukan deteksi objek dengan menggunakan keseluruhan gambar sekaligus untuk menjadi masukan input neural network-nya. Cara ini membuat YOLO memiliki tingkat kecepatan yang tinggi mendekati real-time. Selain deteksi objek, diterapkan juga algoritma tracking yang berfungsi untuk menandai pergerakan objek rokok pada video. Sehingga objek rokok akan tetap disensor walaupun terjadi perubahan cahaya, terhalang objek lain, dan gangguan visual lainnya pada video. Algoritma tracking yang digunakan pada penelitian ini adalah ByteTrack. ByteTrack adalah algoritma tracking yang menggunakan komputasi yang minim karena dapat melakukan tracking dengan hanya memproses lokasi bounding box tiap frame video. Perbedaan algoritma ini dibandingkan yang lain adalah ByteTrack akan memanfaatkan semua hasil deteksi objek walaupun terdapat nilai confidence yang kecil. Pada penelitian ini didapatkan model training terbaik dari YOLOv8 dengan nilai presisi sebesar 86,5%, nilai recall sebesar 86,1%, nilai mAP 50 sebesar 88,1%, dan nilai mAP 50:95 sebesar 58,3%. Lalu pada konfigurasi confidence ByteTrack didapatkan hasil terbaik dengan pada confidence tahap pertama sebesar 0,247 dan tahap kedua sebesar 0,01. Hasil tracking ini mendapatkan nilai presisi sebesar 62,3%, nilai recall sebesar 62,7%, nilai akurasi sebesar 45,5%, dan nilai F1 sebesar 62,5%. ......Artificial intelligence (AI) is a technology that is developing rapidly and popular in this era. AI technology creates the possibility to solve and overcome many simple complex problems. One example of the application of AI technology that has great development is computer vision, which is a concept that can make a computer program to detect and classify objects in an image.  Using computer vision, this technology can be used to detect cigarette. From image or video media, the algorithm can check if there is any cigarette and then locate the object in the image. This is useful to censor cigarette from media that consumed by children. On video medium, censorship usually done manually with the help of object tracking. This method can be tiring because even if object tracking is used, there must be a person as a detector that locate the cigarette every few frames. There are many architectures and models for object detection, YOLOv8 (You Only Look Once version 8) is one of them. YOLOv8 is the latest version of YOLO algorithm. YOLOv8 is considered as one of the state-of-the-art algorithm for object detection.  YOLO model is based from Convolutional Neural Network (CNN). The concept of this algorithm to detect object is called single stage detector, which means that it takes the whole image as input for its neural network thus only single image process needed. This concept makes YOLO fast to detect objects. Object tracking algorithm is also used to keep track detected cigarette even if there is a change in light, occlusion from other object, and other visual changes in the video. ByteTrack is used for the tracking algorithm in this study. ByteTrack works by processing bounding box location of each frame in video, making it use little computation. The main difference of this algorithm is that it process all bounding boxes from the object detection, including detected object with low confidence score. In this study, the YOLOv8 model managed to obtain the best performance with precision value of 86.5%, recall value of 86.1%, mAP 50 value of 88.1%, and mAp 50:95 value of 58.3%. For the confidence configuration of ByteTrack, best performance is achieved with 0.247 confidence score for the first association and 0.01 confidence score for the second association. The result of this configuration is a precision value of 62.5%, a recall value of 62.7%, an accuracy value of 45.5%, and a F1 score of 62.5%.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Tjakra Adisurja
Abstrak :
Kemajuan teknologi kini mengizinkan manusia untuk mengambil gambar citra termal yang memiliki kemampuan untuk menerima citra termal tanpa perlu adanya cahaya tampak. Hal ini membuat manusia dapat melihat dalam gelap akibat pancaran benda-hitam dari benda-benda yang menghasilkan panas. Dengan menggunakan algoritma Single Shot Detector, dapat dilakukan deteksi objek berupa manusia untuk membedakan laki-laki dengan perempuan. Model SSD dengan berbagai arsitektur seperti MobileNetV1, MobileNetV2 dan ResNet50 digunakan untuk menguji kemampuan deteksi objek kamera termal terhadap kemampuan deteksi objek pada kamera berwarna. Arsitektur model kamera termal dengan nilai mAP dan AR@1 dengan data pengujian terbaik adalah ResNet50 dan untuk arsitektur model deteksi objek kamera berwarna terbaik adalah MobileNet V1 .Kamera termal unggul dalam melakukan deteksi di seluruh rentang kondisi pencahayaan namun kamera berwarna hanya mampu melakukan deteksi di atas intensitas cahaya 42 lux.Kamera berwarna unggul dalam melakukan deteksi dengan nilai inferensi terbaik berada di antara 3 – 15m sedangkan kamera termal memiliki jarak efektif melakukan inferensi di antara 3 – 10m. ......The advancement in imaging technology has come to an era where cameras are now able to capture infrared images. This advancement causes cameras to be able to capture without any visible light spectrum and receive image under the dark due to the black-body radiation phenomena. In conjunction with Single Shot Detector algorithm, it is now possible to detect and clasify thermal images into classes to recognize the gender of a human being as a male or female. The architecture used in the models are MobileNetV1, MobileNetV2 and ResNet50 which are then trained using a custom dataset of thermal images and colour images. The testing dataset shows that ResNet50 is the model with the highest mAP and AR@1 score for thermal model and MobileNetV1 is the model with the highest mAP and AR@1 score for colour model. The other test with varying object distance and varying light instensity shows that thermal image detection models are able to detect object at all lighting condition while the colour image models are only able to detect object above 42 lux. Colour detection models are better at detecting objects at a longer distance from the camera from a distance of 3 – 15 m while the termal models are able to do inference effectively from a distance of 3 – 10 m.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>