Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Mulyawan
"Peningkatan kualitas kinerja motor bakar selalu berkembang dari waktu ke waktu. Semakin maju teknologi semakin tinggi standar kualitas kerja yang dituntut oleh masyarakat. Setiap penggunaan motor bakar selalu- memberi dampak samping yang negatif ke Iingkungan. Salah satu dampak negatif yang ditimbulkan dari motor bakar adalah polusi gas buang hasil pembakaran dan pemanasan global. Pada umumnya gas buang motor bakar mengandung bahan klmia yang bcracun bagi tubuh sekalipun kadamya kecil, Bahan beracun seperll CO, NOx, Sulfur, dan Iainnya adalah akibat pembakaran yang kurang sempuma pada ruang bakar. Salah satu cara mengalasi ketidaksempurnaan pembakaran adalah dengan menginjcksikan sejumlah air ke dalam ruang bakar. Untuk melihat perubahan kadar emisi gas buang, suhu dan tekanan gas buang dilakukan penelitian dengan menginjeksilcan air ke dalam ruang bakar pada engine research and rest bed mesin Diesel model DWE-47150-HS-AV. Variasi parameter yang dilakukan dalam penelitian ini adalah dengan mengubah bukaan katup dan pemakaian beban tambahan. Hasil penelitian menunjukkan bahwa injeksi air menyebabkan penurunan suhu gas buang sebesar 11.6 °C, kenaikan emisi CO2 sebesar 0.9 % vol. dan HC sebesar 5 % ppm vol., dan penurunan emisi O2 sebesar I %.

The improvement of combustion engines' work quality always develops from lime to time. The more advanced the technology is the more higher standard quality of work will be demand by society Every use of combustion engine always gives negative effect io the enviroment. One of the negative ejects that come from combustion engine is pollution of residual gas and global warming. Commonly combustion engine residual gas contains poisonous chemical subsrancejbr body even in a small quantity. Poisonous subsiance like CO, NO, Sulphur, and others are caused by imperfect combustion in combustion chamber. One ofthe ways to handle impact combustion is by injecting some Water to the combustion engine. in order io see the quantify change in residual gas emission, temperature and residual gas pressure, a research is done by injecting water into Diesel engine research and test bed‘s combustion chamber type DWE-47/50-HS-AV The variety parameter thai has been done in this research is by modifying the throttle valve opening and using extra weight. The research result show that water injection caused 11.6 UC decrease in residual gas temperature, 0.9 % vol. increase in CO2 emission and 5 % ppm vol. in HC emission, and I % decrease in 02 emission."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dandekar, M.M.
Jakarta: UI-Press, 1991
621.31 DAN wt
Buku Teks SO  Universitas Indonesia Library
cover
Haeqal Gielbran Arif
"Lanskap energi Indonesia siap untuk bertransformasi, dimana pembangkit listrik tenaga air menjadi komponen penting dalam transisi menuju energi terbarukan. Pengembangan pembangkit listrik tenaga air mini, khususnya, menawarkan potensi besar dalam menghasilkan energi dan pertumbuhan ekonomi. Namun penilaian terhadap proyek-proyek tersebut penuh dengan ketidakpastian karena rentan terhadap berbagai risiko dan faktor eksternal. Penelitian ini menggunakan pendekatan Value at Risk (VAR), yang menggabungkan Discounted Cash Flow (DCF) dan Simulasi Monte Carlo, untuk mengukur nilai fasilitas pembangkit listrik tenaga mini hidro di Koro Kabalo. Dengan menganalisis dampak berbagai skenario terhadap nilai fasilitas, penelitian ini bertujuan untuk memberikan pemahaman komprehensif tentang risiko dan ketidakpastian yang terlibat dalam penilaian proyek pembangkit listrik tenaga air. Temuan ini menyoroti peran penting laju aliran air dalam menentukan nilai fasilitas dan menggarisbawahi pentingnya mempertimbangkan berbagai faktor risiko dalam proses penilaian. Studi ini berkontribusi pada pengembangan model penilaian yang lebih kuat dan akurat untuk proyek pembangkit listrik tenaga air, yang pada akhirnya memberikan informasi dalam pengambilan keputusan investasi dan pengambilan kebijakan di sektor energi.

Indonesia's energy landscape is poised for transformation, with hydropower emerging as a crucial component in the transition to renewable energy. The development of mini hydropower plants, in particular, offers significant potential for energy generation and economic growth. However, the valuation of these projects is fraught with uncertainty, as they are susceptible to various risks and external factors. This study employs the Value at Risk (VAR) approach, combining Discounted Cash Flow (DCF) and Monte Carlo Simulation, to quantify the value of a mini hydropower plant facility in Koro Kabalo. By analysing the impact of different scenarios on the facility's value, this research aims to provide a comprehensive understanding of the risks and uncertainties involved in hydropower project valuation. The findings highlight the critical role of water flow rate in determining the facility's value and underscore the importance of considering multiple risk factors in the valuation process. This study contributes to the development of more robust and accurate valuation models for hydropower projects, ultimately informing investment decisions and policy-making in the energy sector."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rhafif Adli Dzakiariq
"Permasalahan iklim global yang sangat serius dimana global warming telah memberikan kontribusi besar pada kenaikan suhu global. Tidak dapat dipungkiri kenaikan rata-rata suhu global telah mencapai 1.25°C pada Agustus 2023 bahkan menurut para peneliti ada kemungkinan sebesar 66% bahwa kenaikan suhu global akan melewati angka 1.5°C antara saat ini hingga tahun 2027. Pertumbuhan laju kenaikan suhu bumi ini mayoritas disebabkan oleh aktivitas hidup umat manusia dimana emisi CO2 pada sektor energi yakni emisi hasil pembakaran minyak, gas, dan batu bara menjadi penyebab terbesar terjadinya kenaikan rata-rata suhu global yang signifikan. dari itu, perlu adanya peralihan penggunaan energi berbasis fossil menuju energi baru terbarukan dengan bertujuan untuk menekan angka kenaikan suhu bumi dengan salah satunya memanfaatkan energi arus laut dengan menggunakan turbin tidal yang mana akan berputar akibat adanya pasang surut arus laut yang menyebabkan energi kinetik air laut untuk menghasilkan energi listrik. Pada dasarnya cara kerja turbin tidal mirip seperti turbin angin begitupun cara kerja nya. Namun, kedua jenis turbin tersebut menggunakan fluida yang berbeda. Dibandingkan dengan turbin angin, turbin tidal lebih banyak memiliki keuntungan diantaranya ketersediaan energi yang lebih teratur dan dapat diprediksi karena pasang surut memiliki pola yang dapat dihitung dan pasang surut memiliki perubahan yang cenderung stabil. Agar kinerja turbin tidal menjadi lebih efisien, penggunaan diffuser dan brim telah terbukti dapat meningkatkan efisiensi turbin dengan adanya efek vortex yang terjadi. Dari studi ini, kami menganalisis dampak penggunaan diffuser dan brim yang diaplikasikan bersamaan dengan blade aerofoil NACA 4418 yang mana hasilnya menyatakan bahwa semakin tinggi ketinggian brim yang digunakan, maka hasil power coefficient yang dihasilkan akan semakin tinggi, dalam studi ini, kami memvariasikan penggunaan diffuser 10,43° dan 15,34° dengan variasi brim 0,1D dan 0,3D serta variasi TSR 1-4. Hasil studi menunjukkan bahwa nilai power coefficient tertinggi terdapat pada penggunaan diffuser 15,34° dengan brim 0,3D pada TSR 3 dengan nilai 47,5%.

The global climate problem is very serious, with global warming having significantly contributed to the rise in global temperatures. It is undeniable that the average global temperature increase reached 1.25°C in August 2023. Moreover, researchers estimate a 66% chance that global temperature increases will exceed 1.5°C between now and 2027. This rapid increase in Earth's temperature is largely caused by human activities, with CO2 emissions from the energy sector—specifically from the burning of oil, gas, and coal—being the largest contributor to the significant rise in average global temperatures. Therefore, there is a need to transition from fossil fuel-based energy to renewable energy sources with the aim of reducing the rate of temperature increase. One of the ways to achieve this is by harnessing tidal energy using tidal turbines, which rotate due to the tidal currents, converting the kinetic energy of seawater into electrical energy. Essentially, the working principle of a tidal turbine is similar to that of a wind turbine, but the two types of turbines use different fluids. Compared to wind turbines, tidal turbines have several advantages, including a more regular and predictable energy supply since tides follow calculable patterns and tend to have stable variations. To enhance the efficiency of tidal turbines, the use of diffusers and brims has been proven to increase turbine efficiency through the vortex effect. In this study, we analyzed the impact of using diffusers and brims in conjunction with NACA 4418 aerofoil blades. The results indicated that the higher the brim used, the higher the resulting power coefficient. In this study, we varied the use of diffusers with angles of 10.43° and 15.34°, brim heights of 0.1D and 0.3D, and TSR (Tip Speed Ratio) from 1 to 4. The study results showed that the highest power coefficient was achieved with a 15.34° diffuser and a 0.3D brim at a TSR of 3, with a value of 47.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andika Bakti Wijaya
"Daerah terpencil di Indonesia seringkali tidak mendapatkan suplai listrik karena biaya instalasi jaringan listrik tidak murah, oleh karena itu perlu ada pembangkit listrik mandiri. Potensi energi air di Indonesia yang sangat besar, menjadikan turbin piko hidro (< 5 kW) pilihan yang tepat. Dipilih turbin air openflume karena memiliki kriteria tinggi jatuh (1-5m) dan debit aliran yang rendah (0.01-1 m3/s). Studi ini akan membahas menghitung efisiensi sudu turbin piko hidro openflume dengan metode eksperimental. Tinggi jatuh air adalah 2.7 m dan debit aliran air 0.045 m3/s. Hasil evaluasi menunjukkan daya luaran sudu Cihanjuang sebesar 703.35 Watt dengan nilai efisiensi total sebesar 59 %.

Remote areas in Indonesia often do not get electricity supply because of cost istallation, therefore it need to have standalone power plants. Indonesia have very large potential energy of water and pico hydro (< 5kW) turbine is the best choice. The type of openflume turbine is determine corresponding to low head (1-5m) and flow characteristic (0.01-1 m3/s). This study will discuss about efficiency calculation on pico hydro openflume turbine with experimental method. Head is 2.7 m and flow rate is 0.045 m3/s. Evaluation results show that power output of the blade Cihanjuang is 703.35 Watt and the total efficiency is 59 %."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65748
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Fitriyadi
"Pembangkit Listrik tenaga Mikrohidro (PLTM) seperti halnya Pembangkit Listrik tenaga Air (PLTA) adalah suatu bentuk telcnologi yang dapat rnerubah potensi tenaga air menjadi energi listrik Perbedaan antara kedtia bentuk teknologi tersebut adalah dari daya listrik yang dihasilkannya, dimana unluk PLTM pada umumnya menghasilkan daya listrik yang relatif kecil sehingga cocok untuk daerah-daerah terpencil dan kegiatan pendidikan seperti pembuatan laboratorium energi.
Lingkungan kampus UI Depok merupakan daerah yang cukup banyak memiliki kekayaan sumber energi, khususnya sumber tenaga air. Hal ini didukung oleh adanya rencana kampus UI Depok sebagai daerah resapan dalam rangka program pelestarian situ di daerah Jabotabek, disamping digunalcan untuk memasok air tanah untuk lingkungan kampus UI Depok dan sekitamya. Rencana ini direalisasikan dengan membangun waduk yang digunakan sebagai waduk resapan. Waduk ini direncanakan menggunakan dua sumber air, yaitu debit aliran yang berasal dari curah hujan dan debit yang berasal dari sistem irigasi Bendung Empang-Cisadane.
Debit air yang digunakan dalam pembangkitan listrik adalah air luapan dari waduk apabila melcbihi volume 195.343 m?/detik. Volume tcrsebut tetap dijaga konstan agar proses peresapan air ke dalam tanah menjadi maksimal, sesuai dengan tujuan pembangunan waduk sebagai waduk resapan. Potensi tenaga air di lingkungan Kampus U1 Depok tersebut dapat dimanfaatkan sebagai sumber encrgi listrik dengan menggunakan teknologi PLTM, khususnya untuk digunakan sebagai laboratorium energi.
Dalam skripsi ini, pembahasan dibatasi kepada perhitungan debit aliran dan tenaga potensial listrik yang dapat dibangkitkan . Apabila debit air yang digunakan hanya dari curah hujan maka tenaga potensial rata-rata tahunan yang tersedia sebesar 1,2136 kW. Apabila yang digunakan adalah luapan dari air waduk, maka tenaga potensial rata-rata tahunan yang dapat clihasilkan sebesar 24,5294 kW."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S38753
UI - Skripsi Membership  Universitas Indonesia Library
cover
La Ode Muhammad Ikhsan Taufik
"Dalam melakukan perencanaan pembangunan suatu proyek dibutuhkan suatu studi kelayakan finansial yang akan melahirkan sebuah informasi dari segi finansial yang nantinya digunakan oleh investor sebagai input fundamental untuk proses awal decision makingdalam melakukan kerja sama dengan pemerintah pada proyek pembangunan PLTM. Berdasarkan hasil perhitungan dengan semua kriteria kelayakan investasi didapatkan besar NPV (Net Present Value) = Rp. (+38.513.490.168), (Internal Rate of Return) IRRproyek = 16,27% dan Payback periodselama 5 tahun.

In planning the development of a project requires a financial feasibility study that would give birth to an information from the financial side will bear a financial information in terms that will be used by investors as a fundamental input for the decision making process early in cooperation with the government on development mini hydro power plant projects. Based on the estimation results with all eligibility criteria of investment obtained the NPV (Net Present Value) = Rp. (+38513490168), (Internal Rate of Return) project IRR = 16.27% and a Payback period of 5 years."
2013
S54421
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richiditya Hindami
"Pada tahun 2016, terdapat 2.519 desa di Indonesia yang belum mendapatkan kebutuhan energilistrik. Turbin Pikohidro dapat menjadi salah satu solusi yang memungkinkan karena biayainvestasi yang murah, pekerjaan sipil yang sedikit, dan perawatan yang mudah dibandingkanSolar PV dan turbin angin. Turbin cross-flow adalah turbin impuls yang memiliki kelebihanseperti efisiensi yang stabil dalam berbagai kondisi debit, konstruksi sederhana, dan baik dalamskala portabilitas. Studi ini akan mengkaji pengaruh kelengkungan sudu terhadap performaturbin menggunakan metode Computational Fluid Dynamic. Variasi sudu dibuat menjadi rasiokelengkungan terhadap panjang sudu Rs/Ts diantaranya 0 ; 0,08 ; 0,17 ; dan 0,26. Berdasarkanhasil verifikasi, model turbulen RNG k - dipilih untuk mempredikasi pola aliran yang terjadikarena memiliki error yang lebih rendah dibandingkan dengan yang lain. Selain itu, modelturbulen k - RNG banyak dikembangkan pada studi impeler cross-flow baik mesin tenagamaupun kerja. Hasil komputasi mendapatkan sudu dengan rasio Rs/Ts = 0,08 menghasilkanefisiensi yang lebih stabil dan tinggi diduga karena olakan yang terjadi lebih kecil dibandingkanyang lain, sehingga sudu dengan rasio Rs/Ts = 0,08 direkomendasikan untuk digunakan padakondisi tinggi jatuh 2,71 meter dan debit 41 l/s.

In 2016, approximately 2.519 village in Indonesia still didn rsquo t have sufficient access toelectricity. Picohydro turbine can be a proper solution because it has a low investation cost, few civil work, and easy to maintain compared to Solar PV and Wind Turbine. Cross flow isan impulse turbine that has an advantage such as stable efficiency in variable dischargecondition, simple construction, and high portability. To increase cross flow turbineperformance, this study will investigate the effect of blade curvature to the turbine efficiencywith CFD method. The blade variation will be stated as blade curvature to chord length ratio Rs Ts which consist of 0 0,08 0,17 and 0,26. Based on verification test, the k RNGturbulence model was chosen to predict flow pattern because it has a lower error compared toother turbulence model and the turbulence model has been commonly used in cross flowimpeller both on fan and turbine. The Resulted showed that blade with Rs Ts 0,08 yield thehighest efficiency because the it has the lower vortex compared to others. Therefore, the bladewith Rs Ts equal to 0,08 is recomended to use in condition of head 2,71 meter and discharge41 l/s."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yaris Riyaldi
"Periode tahun 1950an sektor ekonomi Indonesia masih di dominasi perusahaan- perusahaan milik Belanda. Perkembangan hubungan diplomasi Indonesia Belanda yang memburuk di akhir tahun 1950-an menyebabkan nasionalisasi terjadi secara massif di seluruh wilayah Indonesia. PLTA Ubrug yang terletak di Sukabumi telah dibangun sejak tahun 1918 dan di nasionalisasi setelah dikeluarkannya Undang- Undang Nomor 86 Tahun 1958 dan Peraturan Pemerintah no 18 tahun 1958. Penelitian ini dilakukan untuk menjawab pertanyaan apa yang menjadi latarbelakang nasionalisasi PLTA, bagaimana proses nasionalisasi yang dilakukan, dan pengaruh apa yang terjadi setelah proses nasionalisasi PLTA Ubrug selesai. Metode yang dilakukan dalam penelitian ini menggunakan metode historis dengan mencari dan mengumpulkan sumber-sumber baik itu primer atau sekunder yang berhubungan dengan topik penelitian. Sumber-sumber yang digunakan adalah surat-surat dan keputusan Pemerintah mengenai nasionalisasi, wawancara dengan pemimpin PLTA Ubrug dimasa kini, dan berbagai sumber sekunder lainnya yang berasal dari kepustakaan. Dari hasil penelitian dapat diketahui bahwa semasa awal pembangunan PLTA Ubrug pemanfaatannya banyak disalurkan ke berbagai sektor, kemudian dimasa pendudukan Jepang keberadaan PLTA Ubrug tidak terlalu tereksploitasi dan baru kembali tersentuh setelah orang-orang Belanda kembali, karena adanya desakan dari SBLGI dan suatu perwujudan dari kedaulatan politik, maka PLTA Ubrug Sukabumi di nasionalisasi pada tahun 1958 yang kemudian memberikan pengaruh terhadap keberlangsungan daerah Sukabumi.

During the 1950s, the Indonesian economic sector was still dominated by Dutch-owned companies. The development of diplomatic relations between Indonesia and the Netherlands which deteriorated in the late 1950s led to massive nationalization throughout Indonesia. The Ubrug hydropower plant located in Sukabumi has been built since 1918 and was nationalized after the issuance of Law Number 86 of 1958 and Government Regulation No. 18 of 1958. This research was conducted to answer questions about what was the background of the nationalization of PLTA, how was the nationalization process carried out, and what effect will happen after the Ubrug hydropower nationalization process is complete. The method used in this study uses historical methods by finding and collecting sources, either primary or secondary, related to the research topic. The sources used are letters and Government decrees regarding nationalization, interviews with current Ubrug hydropower leaders, and various other secondary sources from the literature. From the research results, it can be seen that during the early development of the Ubrug hydropower plant, its use was distributed to various sectors, then during the Japanese occupation, the Ubrug hydropower plant was not too exploited and only came back after the Dutch returned, due to pressure from SBLGI and a manifestation of political sovereignty. , then PLTA Ubrug Sukabumi was nationalized in 1958 which then had an influence on the sustainability of the Sukabumi area."
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2021
MK-pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Siska Widyastuti
"Berlatar belakang dari munculnya permasalahan berkurangnya kapasitas daya pembangkit Bendungan PLTA yang ada, akibat pendangkalan sungai dan sedimentasi yang mengurangi kapasitas tampungan waduk dan umur bendungan.  Sedangkan kebutuhan akan listrik terus naik menyebabkan kelangkaan energi dimasa depan. Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR) dengan sejumlah instansi terkait mengadakan rapat di Solo tanggal 25 Agustus 2016 untuk membahasn hal tersebut, tema rapat tersebut adalah Pengembangan Infrastruktur PUPR dalam mendukung ketahanan energi wilayah Pulau Jawa-Bali. Solusi dari pemerintah untuk membangun bendungan-bendungan baru dianggap tidak sesuai dengan target pemerintah untuk mencapai 23% baruan energi ditahun 2025. Karena pembangunan bendungan baru membutuhkan waktu konstruksi yang lama. Solusi tersebut dianggap merupakan solusi jangka panjang yang tidak sejalan dengan target pemerintah. Sehingga pemerintah berupaya untuk mencari alternatif lain yaitu dengan memanfaatkan bendungan single purpose yang telah terbangun, seperti bendungan yang sebelumnya hanya diperuntukan untuk irigasi, banjir maupun air baku masyarakat. Bendungan single purpose tersebut akan di tambahkan pernagkat pembangkit didalam konstruksinya sehingga menjadi bendungan multipurpose yang dapat menghasilkan daya listrik. Solusi ini dianggap lebih efektif daripada membangun bendungan baru, karena dengan menambahkan instalasi atau perangkat pembangkit (PLTA) kedalam konstruks bendungan single purpose yang ada, tentunya tidak membutuhkan waktu konstruksi yang lama, keuntungan lainnya adalah menghemat anggaran pemerintah. Membangun bendungan baru, diperlukan waktu dan biaya yang tidak sedikit. Pemerintah mengambil langkah awal dengan melakukan rapid assesment dan mendapatkan 17 nama bendungan eksisting yang diharapkan memiliki potensi daya listrik yang dapat dimanfaatkan untuk mengganti daya listrik dari Waduk PLTA yang operasinya sudah tidak optimal. Diharapkan dapat menjadi solusi untuk memenuhi target bauran energi baru terbarukan 23% tahun 2025. Dalam penelitian ini, akan menganalisa data hidrologis dari 17 bendungan tersebut untuk mengetahui besarnya potensi daya listrik yang mungkin dibangkitkan. Dengan mengumpulkan data hidrologi, menguji data tersebut secara statistik kemudian menggunakan metode Flow Duration Curve untuk menghitung debit rencana pembangkit, serta menghitung hasil akhirnya menggunakan rumus potensi daya sehingga diperolehlah total potesi energi yang mampu dibangkitkan dari 17 bendungan tersebut. Hasil dari pendekatan menunjukkan bahwa total energi dari 17 bendungan eksisting tersebut adalah 135 MW, angka ini belum dapat memenuhi angka target pemerintah untuk pembangkitan energi terbarukan tahun 2021 yaitu 1542 MW. Masih jauh dari target RUEN hingga tahun 2025 yang mencapai 45.200 MW (23%). Meski begitu, ini merupakan potensi awal yang baik sehingga pemerintah bisa menggali lebih banyak potensi bendungan eksisting lainnya.

The background is the emergence of the problem of reducing the power capacity of the existing hydropower dam, due to river silting and sedimentation which reduces the reservoir's storage capacity and the life of the dam. Meanwhile, the need for electricity continues to increase causing energy scarcity in the future. The Ministry of Public Works and Public Housing (PUPR) with a number of related agencies held a meeting in Solo on August 25, 2016 to discuss this, the theme of the meeting was PUPR Infrastructure Development in supporting energy security in the Java-Bali region. The solution from the government to build new dams is considered not in accordance with the government's target of achieving 23% new energy by 2025. Because the construction of new dams requires a long construction time. The solution is considered a long-term solution that is not in line with the government's target. So the government is trying to find another alternative, namely by utilizing single-purpose dams that have been built, such as dams that were previously only intended for irrigation, flooding and community raw water. The single-purpose dam will be added with generating devices in its construction so that it becomes a multipurpose dam that can generate electrical power. This solution is considered more effective than building a new dam, because by adding a generator installation or device (PLTA) into the existing single-purpose dam construction, of course it does not require a long construction time, another advantage is saving the government budget. Building a new dam requires a lot of time and money. The government took the initial step by conducting a rapid assessment and obtaining 17 names of existing dams which are expected to have potential for electrical power that can be utilized to replace electrical power from hydropower reservoirs whose operations are no longer optimal. It is expected to be a solution to meet the new renewable energy mix target of 23% by 2025. In this study, we will analyze the hydrological data from the 17 dams to determine the amount of potential electrical power that may be generated. By collecting hydrological data, statistically testing the data and then using the Flow Duration Curve method to calculate the planned discharge of the generator, and calculating the final result using the power potential formula so that the total potential energy that can be generated from the 17 dams is obtained. The results of the approach show that the total energy of the 17 existing dams is 135 MW, this figure has not been able to meet the government's target figure for renewable energy generation in 2021, which is 1542 MW. It is still far from the RUEN target until 2025 which reaches 45,200 MW (23%). Even so, this is a good initial potential so that the government can explore more potential for other existing dams. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>