Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23 dokumen yang sesuai dengan query
cover
cover
Puput Lismawati
Abstrak :
Manusia cukup baik dalam mengenali wajah, betapapun miripnya wajah yang diberikan. Akan tetapi membangun model komputasional yang dapat menyamai kemampuan manusia dalam mengenali wajah merupakan pekerjaan yang sulit. Upaya pengenalan dan pengklasifikasian wajah dilakukan dengan mentransformasikan face images menjadi himpunan karakteristik dari image yang disebut vektor eigen. Pengenalan wajah dengan menggunakan vektor eigen metode Principal Component Analysis dilakukan dengan memproyeksikan test image ke ruang yang direntang dari vektor-vektor eigen, yaitu disebut face space. Kemudian mengklasifikasikannya sebagai individu yang ?dikenali? atau ?tidak dikenali? dengan membandingkan test image tersebut di face space dengan individu pada database.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27683
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardibian Krismanti
Abstrak :
Dari pemeriksaan MRI, diperoleh gambar jaringan otak, yang akan digunakan oleh proton MRS untuk menentukan konsentrasi metabolit otak pada jaringan yang didiagnosa astrocytoma, seperti metabolit NAA, choline, creatine, Lipid, Lactate, Myoinositol, dan Glutamine-glutamate. Dari hasil MRS ini, astrocytoma dapat diklasifikasi berdasarkan derajat keganasannya (grade), yaitu high grade dan low grade. Proses klasifikasi astrocytoma, biasa dilakukan secara manual oleh ahli patologi atau secara statistik. Dalam skripsi ini, akan dibahas proses klasifikasi astrocytoma menjadi tiga kelas derajat keganasan dengan menggunakan metode Principal Component Analysis (PCA) dan Spherical K-Means terhadap data MRS. Algoritma Spherical K-Means merupakan algoritma K- Means dengan cosine similarity. Sedangkan PCA merupakan teknik yang digunakan untuk mencari vektor-vektor basis subruang tiap kelas (grade). Vektor-vektor basis ini akan membangun Principal Component yang akan digunakan dalam pengidentifikasian grade suatu data MRS. Data yang digunakan dalam skripsi ini adalah data yang berasal dari laboratorium radiologi Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. Hasil penelitian yang dilakukan pada skripsi ini, diketahui bahwa PCA dapat mengklasifikasi astrocytoma dengan akurasi tertinggi, yaitu 85%. Selain itu, dari penelitian ini dihasilkan perangkat lunak yang dapat digunakan untuk membantu pengambilan keputusan yang terkait dengan klasifikasi astrocytoma menjadi high grade, low grade, dan normal. ......MRI gives information in form of brain tissue image, which will be used by MRS proton to determine the concentration of brain metabolites on the astrocytoma diagnosed tissue, such as NAA, choline (Cho), creatine (Cr), Lipid (Lip), Lactate (Lac), Myoinositol (MI), and Glutamine-glutamate (Glx). From that result, astrocytoma could be classified to high grade and low grade. This classifying could be processed manually by pathologist, or be processed statistically. On this essay, astrocytoma would be classified into three class of astrocytoma grades with the Principal Component Analysis (PCA) and Spherical K-Means of the MRS data. Spherical K-Means algorithm is a K-Means algorithm with cosine similarity. At the same time, PCA is a technique which used to find the basis vectors of each class (grade) subspace. These basis vectors would build Principal Component which would be used in identifying a grade of a MRS data. The data used in this essay is resourced from radiology laboratory of Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. From this research, note that PCA can classify astrocytoma with the highest accuracy, ie 85%. In addition, this research produce software that can be used to assist decision making related to the classification of astrocytoma to high grade, low grade, and normal
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Zahra
Abstrak :
Penuaan adalah proses alami yang secara bertahap menurunkan kondisi fisik dan menyebabkan kemunculan berbagai penyakit, yang pada akhirnya dapat mengurangi rentang hidup makhluk hidup serta berujung pada kematian. Dalam konteks ini, usia biologis berperan sebagai indikator penting yang mampu mengevaluasi proses penuaan dan prediksi penyakit lebih efektif dibandingkan dengan usia kronologis. Hal ini dikarenakan usia biologis juga memperhatikan kondisi fisiologis individu, bukan hanya mengukur lamanya hidup seseorang sejak lahir. Penelitian ini berfokus pada proses penuaan alami yang tidak dipengaruhi oleh penyakit. Dengan demikian, model ini dapat dijadikan alat untuk mengidentifikasi individu yang jalur penuaannya menyimpang dari jalur penuaan yang sehat. Penelitian ini menggunakan metode Support Vector Regression dan Principal Component Analysis untuk memprediksi usia biologis berdasarkan biomarker klinis yang berkontribusi terhadap proses penuaan. Data yang digunakan pada penelitian ini adalah data medis yang berasal dari Kementerian Kesehatan Republik Indonesia. Pada dataset, dilakukan data preprocessing yang meliputi pengubahan tipe data, penghapusan kolom yang tidak digunakan, penyaringan usia partisipan, pembentukan data sintetis, dan pemisahan dataset pria dan wanita. Selanjutnya, dilakukan feature selection, uji multikolinearitas, dan pembentukan model menggunakan metode Support Vector Regression dan Principal Component Analysis. Performa dari model yang dibentuk, dievaluasi menggunakan Root Mean Squared Error dan Coefficient of Determination. Untuk model yang menggunakan metode Support Vector Regression, didapatkan nilai RMSE = 5, 228 dan r2 = 0, 807 pada model pria, serta nilai RMSE = 1, 798 dan r2 = 0, 959 pada model wanita. Sementara itu, model yang menggunakan metode Principal Component Analysis didapatkan nilai RMSE = 6, 835 dan r2 = 0, 751 pada model pria dan nilai RMSE = 5, 35 dan r2 = 0, 874 pada model wanita. Berdasarkan analisis kinerja model yang dilakukan pada penelitian ini, model dengan metode Support Vector Regression lebih unggul dalam memprediksi usia biologis dibandingkan dengan metode Principal Component Analysis. ......Aging is a natural process that gradually deteriorates physical condition and leads to the emergence of various diseases, ultimately reducing the lifespan of living beings and leading to death. In this context, biological age acts as an important indicator capable of evaluating the aging process and predicting diseases more effectively than chronological age. This is because biological age also considers an individual's physiological condition, not just measuring the length of time of person's life since birth. This research focuses on the natural aging process that is not influenced by disease. Thus, this model can be used as a tool to identify individuals whose aging path deviates from a healthy aging trajectory. This study uses Support Vector Regression and Principal Component Analysis methods to predict biological age based on clinical biomarkers that contribute to the aging process. The data used in this study are medical data from the Ministry of Health of the Republic of Indonesia. In the dataset, data preprocessing is performed, which includes changing data types, removing unused columns, filtering participant ages, forming synthetic data, and separating datasets for men and women. Next, feature selection, tests of multicollinearity, and model formation using the Support Vector Regression and Principal Component Analysis methods are conducted. The model formed is evaluated using Root Mean Squared Error and Coefficient of Determination. For the model using the Support Vector Regression method, RMSE=5,228 and r^2=0,807 were obtained for the men model, while an RMSE=1,798 and r^2=0,959 were obtained for the women model. Conversely, for the model using the Principal Component Analysis method, an RMSE=6,835 and r^2=0,751 were obtained for the men model, and an RMSE=5,35 and r^2=0,874 for the women model. Based on the performance analysis conducted in this study, the model using the Support Vector Regression method outperforms the Principal Component Analysis method in predicting biological age.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Peranginangin, Effendi
Jakarta: RajaGrafindo Persada, 1994
346.04 PER e
Buku Teks  Universitas Indonesia Library
cover
Printono
Bandung: Dua-R, 1961
346.04 PRI u
Buku Teks  Universitas Indonesia Library
cover
Iman Soetignyo
Yogyakarta: Gajah Mada University Press, 1994
346.04 IMA p
Buku Teks  Universitas Indonesia Library
cover
Sava Danugraha Budi
Abstrak :
Deteksi dan resolusi dari lapisan tipis merupakan masalah penting dalam analisis reservoir. Semakin tipis lapisan menyebabkan semakan tingginya puncak frekuensi pada spektrum wavelet yang direfleksikan dari lapisan tipis relatif terhadap domain frekuensi dari wavelet seismik datang. Untuk itu, energi dari gelombang digunakan untuk mendapatkan integrated energy spectra (INTENS) sebagai fungsi dari frekuensi. INTENS merupakan hasil plot antara integrated partial energy dengan frekuensi yang dapat digunakan untuk mendeteksi perubahan ketebalan dari lapisan tipis yang tidak dapat langsung dikenali pada domain waktu. Metode integrated energy spectra diterapkan pada model baji dan data seismik real 3 dimensi untuk mendapatkan penggambaran lapisan tipis yang lebih baik. Kemudian, untuk mempermudah analisis lapisan tipis, digunakan metode principal component spectral analysis (PCA) untuk mencari trend dari dari data yang dihasilkan. Metode ini mengkompaksi 86 komponen spectral yang harus dianalisa menjadi kurang dari 6 komponen utama. Hasil yang didapat menunjukkan PC band pertama dapat menggambarkan dengan baik distribusi channel. Jumlah dari 6 PC band pertama menunjukkan variansi sebesar 78% dan dapat menggambarkan distribusi channel yang lengkap. PCA dapat memproyeksikan fitur utama dengan baik pada beberapa PC band pertama dan menghilangkan sinyal yang tak berarti seperti noise. ......Detection and resolution of thin layers is an important issue in the analysis of the reservoir. A progressively thinner bed corresponds to a progressively higher peak frequency in the spectrum of the wavelet reflected from the thin bed relative to the dominant frequency of the incident seismic wavelet. the energy of the waveform is used to obtain integrated energy spectra as a function of frequency. INTegrated ENergy Spectra (INTENS) is a plot of integrated partial energy against frequency that can be used to detect changes in thickness of thin that are not immediately recognizable in the time domain. Integrated energy spectra method applied to the wedge model and 3-dimensional real seismic data to obtain a better image of thin bed. Then, to analyze thin layers, principal component analysis (PCA) is used to find the trend of the data produced. This method decrease 86 spectral components that must be analyzed to less than 6 main components. The results show the first PC band can delineate channel distribution with good image. The sum of first 6 PC bands show variance by 78% and can delineate the complete distribution channel. PCA could project the main features on some first PC band and could eliminate bad signal such noise.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S698
UI - Skripsi Open  Universitas Indonesia Library
cover
Anggi Pandyo Wibowo
Abstrak :
Magnetic Resonance Spectroscopy (MRS) membantu ahli radiologi untuk mengetahui tingkat keganasan dari kanker otak (astrocytoma). Dalam tugas akhir ini akan dibahas proses klasifikasi terhadap data hasil MRS untuk mengetahui tingkat keganasan dari astrocytoma yang terdiri dari Tingkat rendah (Low Grade), Tingkat tinggi (High Grade), dan Normal. Data yang digunakan dalam tugas akhir ini berasal dari RSU Pusat Nasional Dr. Cipto Mangunkusumo, Jakarta. Metode yang digunakan untuk klasifikasi adalah metode Independent Component Analysis dan metode Possibilistic C-Means. Hasil percobaan yang dilakukan menunjukkan bahwa metode Independent Component Analysis mempunyai nilai akurasi 96,67% sementara nilai akurasi dari metode Possibilistic C-Means mencapai 90,91%. Dalam tugas akhir ini, akan dibuat sebuah perangkat lunak untuk pendukung keputusan yang membantu memberikan informasi mengenai tingkat keganasan dari astrocytoma. ......Magnetic Resonance Spectroscopy (MRS) helps radiologists to determine the level of malignancy of brain cancer (astrocytoma). In this final project, we will discuss the classification process of MRS data to determine the level of malignancy of astrocytoma consisting of low grade, high grade, and normal. The data used in this final project comes from the National Central Hospital Dr. Cipto Mangunkusumo, Jakarta. The methods used for classification are the Independent Component Analysis method and the Possibilistic C-Means method. The experimental results show that the Independent Component Analysis method has an accuracy value of 96.67% while the accuracy value of the Possibilistic C-Means method reaches 90.91%. In this final project, a decision support software will be made to help provide information about the level of malignancy of astrocytoma.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27867
UI - Skripsi Open  Universitas Indonesia Library
cover
Gayatri Waditra Nirwesti
Abstrak :
Penelitian ini melihat korelasi antara kemitraan dan efisiensi teknis perusahaan pada Industri Mikro dan Kecil (IMK). Latar belakang bahwa IMK kerap menemui berbagai kendala akibat keterbatasan sumberdaya produksi, membuat production frontier sulit dicapai sehingga perusahaan kurang efisien secara teknis. Salah satu strategi perusahaan untuk mengatasi masalah ini adalah dengan bermitra. Maka, penelitian ini melihat apakah kemitraan yang dilakukan tersebut berkorelasi positif terhadap efisiensi teknis. Estimasi dilakukan dengan metode maximum likelihood secara stokastik menggunakan data Survei Industri Mikro dan Kecil Tahun 2014, BPS. Kemitraan usaha sebagai variabel utama diukur dengan indeks menggunakan teknik Principal Component Analysis (PCA) untuk merepresentasikan variasi kemitraan yang ada dalam perusahaan. Hasilnya menunjukkan bahwa korelasi positif antara kemitraan usaha dengan efisiensi teknis perusahaan terbukti pada industri mikro, namun tidak pada industri kecil. Perbedaan korelasi ini sangat tergantung pada skala usaha. Pertama dari sisi atribut spesifik perusahaan, seperti tingkat pendidikan pemilik usaha dan struktur tenaga kerja, dan kedua dari sisi perilaku oportunistik perusahaan yang mempengaruhi kualitas atau kinerja kemitraan. ......This study looks on the correlation between interfirm cooperation and firms tecnical efficiency in Small Medium Industry (SMI). The background is that SMI often meets obstacle caused by their limited production resources that make production frontier is hard to achieve, thus create less technical efficiency for the firm. One of the firms strategy to overcome this problem is by making interfirm cooperation. Threfore, the study overlook whether the cooperation has a positive correlation with the technical efficiency. Estimation done by maximum likelihood stochastically using data from Survei Industri Mikro dan Kecil Year 2014 by BPS. Interfirm cooperation as the main variable measured by index using Principal Component Analysis (PCA) to represent the variation of cooperation inside the firms. Result shows that positive correlation is found between interfirm cooperation and technicall efficiency on micro industry level, yet not on the small industry. It shows that correlation is depend on the size of the firm. First, from specific atributes of the firm such as education level of firms owner and labor structure. Second, it also depend on the opportunistic behaviour of the firms that affect the quality of the interfirm cooperation.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T52172
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3   >>