Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Abstrak :
Considering that there has been a constant high rate of growth in the demand for ADO (Automotive Diesel Oil) in the Indonesian liquid fuel mix, particularly in the transport sector, and realizing that import of ADO is the highest among liquid fuel imports, due to constraints in domestic production, a preliminary assessment has been undertaken on the possibility of subtituting or complementing the supply for ADO with biodiesel, by way of converting oil extracted from Jatropha curcas. Jatropha curcas oil has been chosen as the base material since (a) its physico-chemical properties is highly suitable to be used as feedstock for the production of biodiesel, (b) it is not an edible oil, and (c) the planting of Jatropha curcas can be undertaken in arid lands, thereby beneficial effects can be obtained, as the massive planting wood result in recovering such lands into productive uses.
JIUPH 4:8 (2001)
Artikel Jurnal  Universitas Indonesia Library
cover
Giviani Puspita Dewi
Abstrak :
Biodiesel merupakan salah satu energi terbarukan yang memiliki kelemahan mudah teroksidasi. Ketidakstabilan oksidasi pada biodiesel dapat menurunkan kualitas biodiesel. Oksidasi biodiesel dapat dicegah dengan melakukan penambahan aditif antioksidan berupa senyawa fenolik seperti pyrogallol. Kelarutan pyrogallol di dalam biodiesel yang rendah dapat ditingkatkan dengan melakukan subtitusi atom hidrogen pada cincin benzena pyrogallol dengan senyawa hidrokarbon tidak jenuh seperti metil linoleat. Katalis 2,2-diphenyl-1-picrylhydrazyl (DPPH) dibutuhkan untuk mereaksikan pyrogallol dan metil linoleat karena dapat larut dalam keduanya. Pada penelitian sebelumnya digunakan metil linoleat murni yang tidak ekonomis jika diaplikasikan dalam skala industri. Pada penelitian ini, biodiesel minyak kanola dengan kandungan metil linoleat sebesar 11,23% digunakan untuk mensintesis turunan pyrogallol dengan rasio 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), dan Liquid Chromatography-Mass Spectrometry (LCMS/MS) digunakan untuk mengetahui keberadaan senyawa turunan pyrogallol. Reaksi menghasilkan spot baru pada uji TLC yang menunjukkan perbedaan polaritas antara pyrogallol dan senyawa turunan pyrogallol yang terbentuk. Uji FTIR menunjukkan terbentuknya senyawa turunan pyrogallol yang ditunjukkan dengan pergeseran peak sebesar 3,73 cm-1. LCMS/MS menunjukkan berat molekul senyawa turunan pyrogallol yang terbentuk yang terdiri atas pyrogallol dan metil linoleat. Hasil uji UV-Vis menunjukkan bahwa senyawa turunan pyrogallol memiliki kelarutan yang lebih baik dalam biodiesel dibandingkan dengan pyrogallol murni. Kinerja antioksidan dalam biodiesel diukur berdasarkan bilangan iodin dan periode induksi. Penambahan antioksidan senyawa turunan pyrogallol pada biodiesel dapat meningkatkan periode induksi sebesar 0,16 - 0,71 jam untuk konsentrasi 1000 - 2000 ppm serta menghambat penurunan bilangan iodin dengan slope sebesar -1,0 sampai dengan -0,8.
Biodiesel is renewable energy which has the disadvantage of being easily oxidized. Oxidation instability in biodiesel can reduce the quality of biodiesel. Biodiesel oxidation can be prevented by adding antioxidant additives in the form of phenolic compounds such as pyrogallol. The solubility of pyrogallol in biodiesel can be increased by substitution of hydrogen atoms in the benzene ring pyrogallol with unsaturated hydrocarbon compounds such as methyl linoleate. 2,2-diphenyl-1-picrylhydrazyl (DPPH) catalyst is needed to react pyrogallol and methyl linoleate because it can dissolve in both. In previous studies, pure methyl linoleate was used which was not economical if applied on an industrial scale. In this study, biodiesel of canola oil with a methyl linoleic content of 11.23% was used to synthesize pyrogallol derivatives with a ratio of 10 ml of biodiesel, 5 ml of DPPH, and 5 ml of pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and Liquid Chromatography-Mass Spectrometry (LCMS / MS) are used to determine the presence of pyrogallol-derived compounds. The reaction produces a new spot in the TLC test which shows the difference in polarity between pyrogallol and pyrogallol derivative compounds formed. FTIR test shows the formation of pyrogallol derivatives which is indicated by a peak shift of 3.73 cm-1. LCMS / MS shows the molecular weight of pyrogallol derivative compounds formed consisting of pyrogallol and methyl linoleate. UV-Vis test results showed that pyrogallol derivative compounds had better solubility in biodiesel compared to pure pyrogallol. The performance of antioxidants in biodiesel is measured based on the iodine number and induction period. The addition of antioxidant pyrogallol derivatives to biodiesel can increase the induction period by 0.16 - 0.71 hours for a concentration of 1000 - 2000 ppm and inhibit the decline in iodine numbers with slopes of -1.0 to -0.8.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Wayan Susila
Abstrak :
The performance test of CI engine which uses biodiesel fuel from vegetable oils and its blends with diesel fuel is essential to be carried out. This research investigates the quality of rubber seed oil methyl ester (RSOME) which is produced via catalytic method dry wash system which uses magnesol (magnesium silicate) as absorbent based on Indonesian Biodiesel Forum (FBI) standard in 2005 and the performance of CI engine, which uses its blends with diesel fuel (B-10, B-20, and B-30). The best engine performance is then compared with RSOME which is produced via non-catalytic method, namely, superheated methanol high temperature atmospheric pressure and diesel fuel (B-0). The engine test shows that B-20 produces the best engine performance at 2550 rpm. Compared to RSOME non-catalytic method and diesel fuel, RSOME catalytic method and non-catalytic method yield the same effective power, whereas diesel fuel is lower than both methods. The engine which uses RSOME non-catalytic method needs the same specific fuel consumption as diesel fuel, but a bit more than catalytic method. The thermal efficiency of RSOME non-catalytic method is higher than catalytic method and diesel fuel, but catalytic method has lower efficiency than diesel fuel. The emission of non-catalytic method is the most eco-friendly, catalytic method is the next, and diesel fuel is the one with the highest emission levels.
Depok: Faculty of Engineering, Universitas Indonesia, 2012
UI-IJTECH 3:1 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Khaliq Fikri
Abstrak :
Dalam konversi minyak kelapa sawit menjadi biodisel, minyak kelapa sawit melalui proses transesterifikasi dengan methanol untuk membnentuk biodisel dan gliserol. Namun utilitas gliserol tidak dapat dimaksimalkan dikarenakan gliserol memiliki sedikit kegunaan dibandingkan dengan biodisel. Gliserol dapat di sintesis untuk meningkatkan nilai ekonomisnya membentuk Gliserol Monostearat (GMS) sebagai agen pengemulsi. Dalam proses esterifikasi gliserol, terdapat beberapa variabel yang mempengaruhi hasil akhir seperti temperatur, dan jenis katalis yang digunakan yaitu NaOH. Riset ini dilaksanakan nutuk memahami pengaruh temperature dan jumlah katalis untuk memproduksi produk GMS dan kemampuannya untuk mengemulsi. Proses sintesis dimulai dengan mereaksikan gliserol dengan asam stearat menggunakan NaOH sebagai katalis dan variasinya jumlah 4%, 7%, dan 9%. Temperatur yang digunakan untuk reaksi menggunakan variasi 210⁰C, 220⁰C, dan 230⁰C. Untuk uji performa, produk GMS akan di bandingkan dengan agen pengemulsi komersil yaitu lecithin dan uji performa dinilai berdasarkan variasi jumlah 1.0, 2.0, dan 3.0 grams per agen pengemulsi untuk mencampurkan air dan minyak dan waktu yang dibutuhkan untuk kedua fasa terpisah Kembali. Dari riset ini dapat di konklusikan bahwa GMS dapat disintesiskan melalui observasi proses esterifikasi, membandingkan hasil FTIR, dan properti fisik produk. Hasil GMS secara kualitatif dan quantitatif dapat terbaik ditemukan pada temperature 220⁰C dan jumlah katalis NaOH 7%. GMS juga dapat mengemulsi air dan minyak, dan dibandingkan dengan lecithin, GMS dapat mengemulsi campuran air dan minyak dari lemak hewan lebih baik. ......In the reaction to convert crude palm oil into biodiesel, it undergoes the process of transesterification of the triglycerides with methanol to form biodiesel and glycerol. The utility of glycerol is not maximized since glycerol itself is considered to have less use than its primary product of biodiesel. Glycerol itself can be synthesized further to increase its economic value, to the form of Glycerol Monostearate (GMS) as an emulsifying agent. Through the process of esterification of glycerol, there are many variables at play including the operating condition of temperature, and using the catalyst of NaOH. This research is conducted to understand the effect of temperature and amount of catalyst on the production of GMS product and its ability as an emulsifier. The process of synthesis occurs with reacting glycerol and stearic acid using NaOH as a catalyst with the variation amount of 4%, 7%, and 9%. The temperature for the operating system occurs with the variation of 210⁰C, 220⁰C, and 230⁰C. For the performance test, the GMS product is compared with a commercial emulsifier, lecithin and is tested based on the amount of 1.0, 2.0, and 3.0 grams per emulsifier used to the time after oil and water mix and how long will it take until both phases separate. From this research, the conclusion of the synthesis for GMS can be done through observation of the process, the comparison of FTIR analysis, and the product physical properties. The temperature at 220°C and amount of 7% catalyst gives the highest yield, low temperature and amount of NaOH will affect the quality of the yield and high temperature and amount of NaOH will affect the quality and quantity of the yield. The product GMS can emulsify water and oil, and in comparison, with lecithin, the product itself is better at the emulsification of water to animal fat oil.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiffany Berliana
Abstrak :
Kandungan sulfur yang terdapat di dalam Biosolar B-30 menyebabkan kerugian karena memperpendek umur mesin kendaraan. Untuk mengatasi hal tersebut, salah satu proses untuk menurunkan kadar sulfur adalah Oxidative Desulfurization (ODS) yang memiliki keunggulan menggunakan kondisi operasi tekanan dan suhu yang rendah. Pada penelitian ini, dilakukan proses ODS menggunakan katalis karbon aktif-asam format, dan oksidator hidrogen peroksida yang memiliki kinerja terbaik menurut peneliti sebelumnya. Proses ODS dilakukan pada wadah berpengaduk pada suhu 30°C sampai 70°C dengan rasio komposisi katalis antara karbon aktif dan asam format 0,01:1 hingga 0,06:1, di oksidasi selama 40 sampai 90 menit, dan rasio molar oksidator terhadap sulfur (O/S) sebesar 6:1 sampai 80:1. Setelah proses oksidasi, dilakukan proses sentrifugasi untuk memisahkan Biosolar dengan sulfur yang telah teroksidasi. Kandungan senyawa sulfur pada biosolar sebelum dan sesudah proses ODS dianalisis dengan metode FTIR. Hasil dari penelitian yang dilakukan, katalis yang digunakan mampu mendesulfurisasi hingga 7,6%, dilakukan dengan menggunakan komposisi katalis antara Karbon Aktif-Asam Format sebesar 0,7 g-1 mL dalam 100 mL Biosolar pada suhu proses ODS sebesar 30℃, waktu oksidasi selama 60 menit, dan rasio molar H2O2/S yaitu 12. ......The sulfur content in Biosolar B-30 causes losses because it shortens the life of the vehicle engine. To overcome this, one of the processes to reduce sulfur content is Oxidative Desulfurization (ODS) which has the advantage of using low pressure and temperature operating conditions. In this study, the ODS process was carried out using an acid-activated formic carbon catalyst, and hydrogen peroxide as an oxidizing agent which had the best performance according to previous researchers. The ODS process is carried out in a stirred vessel at a temperature of 30℃ to 70°C with a catalyst composition ratio between activated carbon and formic acid 0.01:1 to 0.06:1, oxidized for 40 to 90 minutes, and a molar ratio of oxidizing agent to sulfur (O/S) of 6:1 to 80:1. After the oxidation process, a centrifugation process was carried out to separate the biodiesel from the oxidized sulfur. The content of sulfur compounds in biodiesel before and before the ODS process was analyzed by the FTIR method. The results of the research conducted, the catalyst used was able to desulfurize up to 7.6%, carried out using a catalyst composition between Activated Carbon-Formic Acid of 0.7 g-1 mL in 100 mL Biosolar at an ODS process temperature of 30℃, oxidation time for 60 minutes, and the molar ratio of H2O2/S is 12.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adam Hirsaman
Abstrak :
Pesatnya pembangunan di bidang transportasi berimplikasi pada meningkatnya kebutuhan akan bensin (gasoline). Peningkatan ini tidak sejalan dengan cadangan minyak bumi dunia sebagai bahan baku utama pembuatan bensin yang terus menurun. Ini menyebabkan urgensi kebutuhan akan bensin dari bahan baku altelnatif yang terbarukan semakin meningkat dari waktu ke waktu. Minyak sawit, merupakan salah satu bahan yang disebut-sebut dapat digunakan untuk menghasilkan alternatif bensin (biogasoline). Pada penelitian ini biogasoline disintesis dari minyak sawit melalui reaksi hydrocracking dengan katalis NiMo/zeolit yang merupakan katalis pada proses hydrocracking minyak bumi. Penelitian dilakukan dengan mereaksikan minyak sawit dalam reaktor batch berpengaduk bersama katalis NiMo/zeolit dan gas hidrogen. Perbandingan berat katalis/reaktan yang digunakan adalah 1:75. Gas hidrogen dialirkan dengan laju alir rendah pada suhu ruang. Reaksi dilakukan pada tekanan atmosferik dengan 2 variasi suhu, yaitu 300°C dan 320°C masing-masing selama 1 jam, 1.5 jam, dan 2 jam. Penurunan densitas produk reaksi terhadap densitas minyak sawit, penambahan jumlah gugus -CH3, dan pengurangan gugus -C=C- yang ditunjukkan oleh spektrum FTIR, menunjukkan bahwa reaksi hydrocracking yang diinginkan pada penelitian ini memang benar terjadi. Untuk mendapatkan produk biogasoline, dilakukan distilasi batch secara bertahap sebanyak dua kali untuk masing-masing produk reaksi. Pengukuran densitas produk biogasoline menunjukkan hasil yang mendekati densitas bensin komersial. Uji GC dan GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial. Namun demikian masih terdapat kandungan senyawa yang tidak termasuk dalam fraksi bensin dalam proporsi yang cukup besar sehingga produk biogasoline yang didapatkan ini belum dapat digunakan untuk menggantikan bensin. Ini ditunjukkan oleh bilangan oktan produk biogasoline yang jauh lebih kecil dibanding standar bilangan oktan bensin komersial. Untuk mendapatkan produk biogasoline yang memenuhi kriteria bensin, diperiukan proses pemisahan lebih lanjut untuk memisahkan fraksi berat tersebut.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49559
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Mailisa F.
Abstrak :
Kebutuhan bensin meningkat seiring dengan meningkatnya kebutuhan kendaraan bermotor. Namun produksi minyak bumi sebagai bahan baku pembuatan bensin menurun setiap tahunnya sehingga perlu dikembangkan sumber alternatif untuk memperoleh bensin. Bensin merupakan campuran senyawa hidrokarbon C5 - C10. Salah satu sumber hidrokarbon adalah biomass, misalnya minyak kelapa sawit. Indonesia merupakan penghasil minyak sawit terbesar kedua di dunia. Perengkahan katalitik minyak sawit menjadi bahan bakar telah berhasil dilakukan. Pada penelitian saat ini akan dipelajari perengkahan katalitik minyak sawit untuk memproduksi senyawa hidrokarbon setaraf bensin. Pengaruh jenis umpan minyak sawit, temperatur reaksi, penambahan aditif pada katalis dalam proses perengkahan dipelajari dengan mengunakan suatu fixed bed reactor yang beroperasi pada tekanan 1.5 kgf/cm2. Umpan yang akan direngkahkan dilakukan preparasi awal terlebih dahulu melalui oksidasi, transesterifikasi dan penambahan metanol. Temperatur reaksi akan dilakukan dari 350°C sampai dengan 500 °C. Aditif yang ditambahkan pada katalis zeolit adalah B2O3 dengan variasi dari 5% sampai 20 % berat. Produk cair hasil reaksi dianalisis GC-FID dan FT-IR. Sedangkan, karakteristik katalis dilakukan untuk melihat perubahan luas permukaan dengan menggunakanBET dan keberadaan B2O3 pada kristal zeolit dianalisis dengan XRD. Penambahan B2O3 menyebabkan menurunnya luas permukaan katalis dan ukuran pori katalis. Penambahan B2O3 optimum adalah 5%. Yield bensin terbaik yaitu 52.5% diperoleh pada temperatur 450 °C, dengan umpan POME dan katalis zeolit alam murni.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49581
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadi Ahmad Mawardi
Abstrak :
Kenyataan bahwa cadangan minyak bumi dunia yang semakin menipis tidak dapat terelakkan lagi. Dengan kondisi ini memaksa dilakukannya pencarian energi alternatif yang dapat mengurangi beban suplai energi dari basis minyak bumi. Konsumsi bahan bakar bensin di Indonesia terus meningkat tetapi suplai akan bensin tersebut sudah mulai menipis. Minyak kelapa sawit yang dimiliki Indonesia sangat melimpah, dapat dijadikan sebagai sumber bahan bakar bensin. Minyak kelapa sawit mengandung trigeliserida yang mengikat asam lemak jenuh maupun tak jenuh, salah satunya asam oleat yang kandungannya sangat besar mencapai 43%. Secara teoritis, ikatan rangkap pada asam lemak tak jenuh trigliserida dapat terengkah dengan menggunakan katalis asam salah satunya katalis ?-alumma. Penelitian ini dilakukan dengan mereaksikan minyak sawit dengan katalis ?-alumina di dalam reaktor tumpak berpengaduk. Untuk mendapatkan kondisi yang optimum maka dilakukan variasi perbandingan berat minyak/katalis 100:1, 75:1 dan 50:1, suhu reaksi 260-340°C dan waktu reaksi 1-2 jam. Dari hasil uji densitas dan viskositas dan FTIR maka diperoleh kondisi optimum sebagai berikut : perbandingan berat minyak/katalis 100:1, waktu reaksi 1.5 jam dan suhu 340°C. Untuk mendapatkan produk biogasoline, dilakukan distilasi tumpak secara bertahap sebanyak dua kali untuk ketiga produk reaksi yang terbaik dari masing - masing perbandingan berat minyak/katalis. Identifikasi produk biogasoline dengan analisis densitas dan viskositas menunjukkan hasil yang mendekati bensin komersial. Dari uji FTIR, uji GC dan uji GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial dengan yield 11.79% v/v) dan konversi 28% (v/v)terhadap umpan minyak sawit dan bilangan oktana 61.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49579
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Arifianto
Abstrak :
Bahan bakar minyak merupakan suatu kebutuhan yang sangat penting bagi kehidupan manusia. Bahan bakar minyak yang ada sekarang diperoleh melalui reaksi perengkahan melalui minyak bumi. Tetapi ketergantungan manusia akan bahan bakar fosil perlu dikurangi karena cadangan minyak bumi yang semakin berkurang setiap tahunnya. Karena hal inilah dikembangkan bahan bakar minyak yang didapat melalui proses perengkahan minyak nabati. Salah satu jenis minyak nabati yang banyak terdapat di alam adalah minyak kelapa sawit. Metode perengkahan katalitik merupakan suatu cara untuk memecahkan rantai karbon yang cukup panjang, menjadi suatu molekul dengan rantai karbon yang lebih sederhana, dengan bantuan katalis. Bantuan katalis ini bertujuan untuk menurunkan suhu dan tekanan pada saat reaksi. Sementara itu, katalis yang digunakan dalam penelitian ini adalah katalis B203/Al203 yang bersifat asam. Penambahan B203 dimaksudkan untuk membentuk spesi peroksida (022-) pada permukaan katalis. Sedangkan Al203 bersifat asam dan sangat baik untuk memutuskan ikatan antar karbon. Metode yang digunakan dalam menguji hasil reaksi adalah dengan FT-IR, dan GC-FID. Penelitian ini dilaksanakan pada tekanan atmosferik dengan reaktor fixed bed. Berbagai variasi yang akan dilakukan dalam penelitian ini adalah variasi temperatur (350°C, 400°C, 450°C, dan 500°C), kandungan B203 (5%, 10% 15%, 20%, dan 25%) pada katalis dan variasi jenis umpan yang di treatment. Uji aktivasi katalis dengan menggunakan katalis 10% B203/Al203 memberikan hasil yield fraksi bensin terbaik sebesar 58% pada temperatur 450°C dengan umpan POME (Palm Oil Methyl Ester). Ini menunjukkan terjadinya peningkatan keasaman katalis, dan peranan spesi peroksida (O22-) sebagai inti aktif baru.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49573
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gandi Iswara
Abstrak :
Jumlah konsumsi bensin di Indonesia terus meningkat dari tahun ke tahun. Namun, cadangan minyak bumi di Indonesia yang terus berkurang menuntut untuk ditemukannya sumber energi alternatif pengganti bensin. Telah dipublikasikan sebelumnya bahwa minyak kelapa sawit dapat direngkah menjadi senyawa hidrokarbon melalui reaksi perengkahan katalitik pada fasa' gas menggunakan katalis asam, namun produk yang dihasilkan memiliki yield bensin yang kecil, yaitu 4-20%. Penelitian ini bertujuan untuk memperoleh bensin dari minyak kelapa sawit melalui reaksi perengkahan katalitik pada fasa cair dengan jumlah yield bensin yang tinggi. Minyak kelapa sawit direaksikan dengan katalis H-Zeolit yang dipreparasi dari Zeolit Alam melalui metode pertukaran ion. Reaksi dilakukah dalam fasa cair dengan rasio berat katalis per berat umpan 1:75 di dalam reaktor tumpak berpengaduk. Reaksi dilakukan dengan variasi waktu 1 hingga 2 jam pada suhu 300-320°C. Reaksi yang terjadi adalah reaksi perengkahan katalitik, dimana H-Zeolit merengkah ikatan kimia minyak kelapa sawit menjadi hidrokarbon dengan rantai yang lebih pendek. Agar diperoleh yield bensin yang tinggi, produk reaksi didistilasi secara tumpak sebanyak 2-3 kali. Distilasi dihentikan apabila diperoleh produk yang memenuhi spesifikasi bensin dalam hal titik didih dan densitas. Produk yang memenuhi spesifikasi bensin ini disebut Bensin-Bio. Pada Bensin-Bio, dilakukan analisis GC-MS, angka oktana dan RVP. Berdasarkan hasil penelitian, kondisi optimum reaksi adalah pada reaksi selama 1 jam pada suhu 320°C dan dilanjutkan dengan dua kali distilasi secara tumpak. Produk yang dihasilkan memiliki densitas 0,77 g/mL dan titik didih akhir 255°C. Komposisi Bensin-Bio adalah senyawa hidrokarbon dengan jumlah rantai Ci-Cn , memiliki RVP 48,23 serta angka oktana 122,24. Konversi reaksi adalah 21,56% dan yield bensin sebesar 58%.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49605
UI - Skripsi Membership  Universitas Indonesia Library