Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 29 dokumen yang sesuai dengan query
cover
Rudy Priyanto
"ABSTRAK
Keramik adalah salah satu material yang pesat perkembangannya bailc a'ari sisi telmalagi maupun aplilcasi. Eskalasi material ini dnzerkirakan akan banyalc mensubstitusi penggunaan logam sebagai material engineering pada masa menalatang. Salah sara ap/iltasi yang lcini dirambah bahan lceramilr adalalz teknologi membran. Pengembangan material lcerarnik sebagai balzan penyusun membran banyal: dilakukan mengingaz masih minimnya penggzmaan material inorganik, seperti keramilc, sebagai membran yang masih daminasi oleh_ material arganik Quolimerj. Upaya perbai/can syat dan lraralcteristilc membran organik, terurama keramik, ter-us dilakukan untuk mendapatkan sifat-s#`at yang lebilz baik dan dapat mensubstitusi penggunaan material organik (palimer) sebagai bahan penyz/sun menzbran secara luas_
Dalam penelitian ini, yang berrujuan untuk mengetalzui pengarulz penamba/zan sililta murni pada membran keramilc, didapatkan hasil ba/:wa pengaruh penarnbalzan silika murni ke dalam mineral zeolit (66.67 % SIO2)
memberilcan peninglcatan yang signjilcan pada six! fisik dan melcanis membran keramilc zeolit yang dihasilkan. Proses telcnologi serbuk yang dilakulcan pada pembuatan membran ini menggunalcan beban kampalcsi sebsar 100 Ion dan temperatur pemanasan 1050 ?C a'engan walctu talran 2 jam. Hasilnya adalalz teijfadinya peningkaran lcekerasan dan penunman porositas pada membran tersebut, terutama pada penambahan /radar silika (Si02j diatas I5 %. Urztuk lcekerasan paala penambalzab 25 % SiO; menghasilkan nilai kelcerasan 445 I/HM jauh lebih keras dibandinglcan zeolit murni sebesar 157 I/HN atau tejadi lcenaikan sebesar 64. 71 %, demikian pula halnya dengan porositas, yang teijadi penurunan lzingga mencapai 7.1 % pada penanzbahan 25 % silika.

"
2001
S41544
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pada penelitian ini digunakan zeolit klinoptiiolit alam sebagai bahan dasar kata|is_ Proses aktivasi di-Iakukan dalam dua cara yang bebeda, yaitu proses pertukaran kation diikuti dengan dealuminasi, Serta proses aktivasi dengan urutan sebaliknya Salah satunya diujikan sebagai katalis sadangkan yang Iain sebagai support untuk katalis ZnOICr2O3 yang penyisipannya dilakukan dengan metode kopresipitasi.
Sebelum dilakukan uji coba pada reaksi dekomposisi n-heksana, dilakukan karakterisasi iuas permukaan, komposisi kation dan kristaIinitas. Uji reaksi dilakukan dengan reaktor unggun tetap (kontinu) pada Iaju alir gas carrier N2 sebesar 30 mllmenit dan berat katalis masing-masing 0,1 gram.
Zeolit klinoptilolit yang proses aktivasinya diawali dengan pertukaran kation, pada reaksi dekomposisi n-heksana memgrikan konversi mulai signifikan pada temparatur reaksi mulai mendakati 450 °C dan menghasilkan sanyawa propena Serta isomamya. Pada suhu 470 °C, konversinya mencapai 10,5%. Sedangkan zeolit kiinoptilolit yang proses aktivasinya diawali dengan dealuminasi, sampel katalis Iebih cepat terdeaktivasi sekalipun memiliki karakter permukaan yang Iebih baik_
Katalis Zn0!Cr2O3!zeo|it menghasilkan konversi yang mulai signitikan pada temperatur reaksi mendekati 400 “C dan mamberikan produk senyawa heksena sarla isomernya. Pada 470 °C, konversinya mencapai 22%."
Fakultas Teknik Universitas Indonesia, 1996
S48893
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Silvia Ningsih
"Dalam penelitian ini telah berhasil dilakukan sintesis fotokatalis Ni2+-ZnO berbasis zeolit alam dengan teknik presiptasi. . Sampel fotokatalis Ni2+ZnO berbasis zeolit alam dikarakterisasi dengan melakukan serangkaian pengujian seperti X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Larutan metal jingga digunakan sebagai katalis untuk mengetahui aktivitas fotokalisis dari sampel. Hasil penelitian menunjukkan bahwa zeolit dapat meningkatkan aktivitas dan efisiensi fotokatalis ZnO, karena memiliki kemampuan absorbance yang tinggi karena memiliki struktur berpori. Ion doping yang diberikan juga dapat meningkatkan aktivitas fotokatalis karena akan menahan laju rekombinasi. Selain itu, semakin besar konsentrasi ion yang didoped, maka semakin kecil energi celah pita yang membuat semakin mudahnya eksitasi elektron dari pita valensi ke pita konduksi.

In the current research Ni2+-ZnO photocatalyst has been performed, using a precipitation technique. The as prepared materials were characterized by X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Methyl Orange solution was used to estimate the photocatalytic activity of the samples. The research showed that zeolite enhance photocatalytic activity and efficiency of ZnO because of its high absorbance ability and its porous structure. Ion doped also enhance photocatalytic activity because inhibite the recombination rate. In addition, higher concentration of ion doped, lower band gap energy making electron easily excitate."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1868
UI - Skripsi Open  Universitas Indonesia Library
cover
Anna
"Zeoiit merupakan mineral alumina silikat yang mempunyai struktur
berongga dengan dinding berupa jaringan polihedral dari atom Si dan Al. Rongga
ini dapat saling berhubungan membentuk terowongan yang biasanya diisi oleh
air dan kation yang dapat saling dipertukarkan. Molekul atau ion yang
mempunyai ukuran lebih kecil atau sama dengan ukuran rongga dapat masuk ke
dalamnya sehingga menyebabkan zeoiit bersifat sebagai penapis molekul.
Pada penelitian ini dilakukan sintesis zeoiit dari kaolin secara tiidrotermal.
Zeoiit yang disintesis meliputi dua jenis yakni zeoiit A dan X. Modifikasi pada
proses hidrotermal dilakukan dengan menggunakan variasi basa, waktu
pengadukan dan temperatur pemanasan. Zeoiit yang diperoleh pada proses
zeolitisasi kaolin mengalami perubahan dibandingkan kaolin asalnya. Perubahan
tersebut dapat dilihat pada basil pengukuran menggunakan XRD.
IV
Selanjutnya zeolit hasil sintesis ini digunakan sebagai penapis molekul
saturat yang merupakan hasil frakslonasi minyak bumi. Zeolit A digunakan
sebagai penapis molekul normal alkana sedangkan zeolit X sebagai penapis
molekul hidrokarbon dalam bentuk siklik. Untuk zeolit A dilakukan variasi waktu
tinggal dalam kolom yakni selama 1, 5. 10, 20 dan 30 menit dan dilakukan
desorpsi fraksi alkana dari zeolit A hasil perlakuan molekular sieve. Penelitian ini
merupakan preparasi awal untuk memudahkan kegiatan analisis komponen
biomarker.
Kemampuan zeolit dalam menyerap normal alkana dapat dilihat dari hasil
pengukuran menggunakan kromatografi gas dimana rasip C-20 - C-34/ Pristan
sebelum dan sesudah perlakuan molekular sieve dapat dibandingkan. Melalui
pengukuran ini ternyata diperoleh hasil yang menunjukkan bahwa semakin besar
atom karbon semakin besar pula prosentase penyerapannya. Bila dibandingkan
antara variasi waktu tinggal ternyata waktu tinggal selama 10 menit memiliki
kapasitas maksimum.
Ada 2 kelas molekul yang ingin dilihat dalam penyaringan hidrokarbon
dalam bentuk siklik ini, yakni molekul triterpana (m/z = 191) dan molekul sterana
(m/z = 217). Pengukuran ini dilakukan menggunakan kromatografi gasspektroskopi
massa. Hasil yang diperoleh menunjukkan bahwa zeolit X hasil
sintesis cukup efektif dalam memisahkan komponen-komponen dalam kedua
kelas molekul tadi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Mulyani
"Zeolit ZSM-5 merupakan zeolit yang sangat penting dalam industri
karena struktur pori dan susunan kristal zeolit in! memungkinkannya dapat
digunakan sebagal katalis, ad^orben, penukar ion dan penyaring molekul.
Zeolit ZSM-5 telah disintesis dari larutan hidrogel dengan komposisi mol
18 Na20 : 20 R : AI2O3: 60 Si02: 1500 H2O, dimana R adalah zat pengarah
1,2-diaminoetana sebagai pengganti TPA-Br. Sintesis dilakukan pada suhu
180° C selama 290 jam. Analisis dilakukan dengan menggunakan
difraktometer sinar-X dan spektrofotometer FT-IR. Zeolit digunakan sebagai
katalis, dengan mengubah Na-ZSM-5 menjadi H-ZSM-5, pada reaksi konversi
metanol menjadi komponen bensin dengan variasi suhu 350°, 400°, 450° C.
Dari analisis kromatografi gas, senyawa-senyawa yang dapat diidentifikasi
dari produk yang dihasilkan antara lain: isopentan, benzen, sikloheksan, dan
toluen. Diperoleh % konversi berturut-turut sebesar 40,71%, 57,34%, dan
27,67% pada reaksi yang dilakukan dengan suhu 350°, 400°, dan 450° C."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Swandani Sayuningtyas
"Bahan utama yang sangat panting dalam pembentukan zeolit adalah
sifika dan alumina. Komposisi kimia ini dapat diperoleh salah satunya dari
sumber alam seperti bentonit. Telah dipelajari, secara teknis dapat dilakukan
sintesis zeolit A dari bentonit ( Li, 2000; Lu,1991: Wang, 2002). Pada
penelitian ini bentonit yang digunakan berasal dari daerah Medan, dan
pengubahan bentonit menjadi zeolit A dapat dilakukan secara hidrotermal
melalui proses pengasaman, pembasaan, gelasi, dan kristalisasi.
Kunci keberhasilan membuat zeolit A dari bentonit adalah dengan
memperhatikan parameter proses seperti dosis zat kimia yang akan
direaksikan, suhu, dan waktu. Hal ini dapat mempengaruhi kualitas produk yang dihasilkan. Karakterisasi zeolit A yang dihasilkan dilakukan dengan
pengukuran menggunakan XRD.
Seianjutnya membandingkan kemampuan bentonit dan zeolit A hasi!
sintesis dalam mengadsorpsi ion Cu^"" dan ion NP"" yang biasa terdapat di
alam sebagai zat pencemar air yang dapat menimbuikan kerugian lingkungan
sekitar.
Waktu adsorpsi optimum bentonit dan zeolit A terhadap ion Cu^"" dan
ion NP"" adalah 100 menit. Konse.ntrasi optimum ion Cu^"" dan ion Np"" yang
dapat diserap oleh bentonit dan zeolit A adalah 300 ppm.
Daya serap zeolit A terhadap ion logam lebih besar daripada bentonit.
Misalnya pada waktu 100 menit, adsorpsi Ion Cu^"" dengan konsentrasi awal
40 ppm (0.0315 mek) pH larutan 5 oleh zeolit A sebesar76.751% dan oleh
bentonit sebesar 75.838%. Kapasitas adsorpsi tergantung pada pK larutan,
adsorpsi optimum ion Cu^"" dan ion Np^ terjadi pada pH 5"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Katalis zeolit Y tipe faujasite merupakan jenis katalis yang digunakan dalam industri petrokimia, secara khusus dalam Unit Catalytic Cracking. Mengingat keberadaan tipe faujasite alam masih jarang ditemui, maka perlu dilakukannya sintesis tipe faujasite. Dalam penelitian ini telah disintesis zeolit Y tipe faujasite tampa menggunakan template.
Sintesis zeolit Y tanpa template dilakukan secara hidrotermal dengan menggunakan gel yang mengandung sumber silika, aluminium, bahan organik, dan air.
Sumber silika yang digunakan berupa fumed silika dan sumber silika lain yaitu abu sekam padi. Langkah awal pembuatan gel dengan sumber silika berupa abu sekam padi adalah penyiapan abu sekam padi yang meliputi pencucian, pembakaran, dan analisis. Pembakaran abu sekam padi dilakukan pada temperatur 800 °C dan 1000 °C.
Dalam penelitian ini, sinlesis zeolit Y secara hidrotennai diiakukan di dalam tabung stainless steel dengan memvariasikan temperatur kristalisasi yaitu 120 °C, 140 °C, dan 160 ºC selama. 48 jam. Hasil sintesis dikarakterisasi menggunakan XRD untuk mengetahui struktur yang terbentuk.
Hasil analisis abu sekam padi dengan spektrofotometer inframerah menunjukkan adanya spektrum asymmetric, symmetric, dan frekuensi pita vibrasi uutuk ikatan Si-O-Si pada. panjang gelombang 1100, 802,24, dan 462,83 cm-1. Sedangkan hasil analisis spektrofotometri serapan atom menunjukkan kadar kandungan SiO; yang tinggi diperoleh pada pembakaran 1000°C yaitu sebesar 94,7% sedangkan pada pembakaran 800 ºC sebesar 86,9%. Hasil ini menunjukkan bahwa abu sekam padi dapat digunakau sebagai altematif sumber silika, mengingat cara perolehannya cukup sederhaua dan relatif murah sehingga lebih bernilai ekonomis.
Pengaruh kenaikkan temperatur kristalisasi pada sampel yang menggunakan sumber silika berupa fumed silika memiliki kecenderungan menaikkan kemurnian produk.
Sementara pada sampel yang mengguuakan sumber silika berupa abu sekam padi menunjukkan kemurnian produk. Produk sintesis yang dikarakterisasi dengan XRD menunjukkan bahwa kemurnian produk zeolit Y yang dihasilkan masih banyak memiliki impurities, hal ini ditunjukkan dengan terbentuknya jenis struktur yang lain yaitu : analcime, AIPO-C, dan gismodine, NN (tidak diketahui)."
Fakultas Teknik Universitas Indonesia, 1997
S48924
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widarto
"Zeolit adalah sejenis bahan mineral yang banyak digunakan diberbagai industri karena kemampuannya dapat melakukan pertukaran ion, daya scrap, daya saring molekular dan al-rtiiitas katalisnya. Indonesia memiliki potensi zeolit alam yang cukup besar, namun belum dimanfaatkan secara optimal. Potensi zeolit alam Indonesia yang telah diketahui tersebar di 46 loksi di seluruh Indonesia. Zeolit alam tersebut, belum bisa dimanfaatkan secara baik, karena masih terdapat senyawa-senyawa organik atau mineral lain yang bersifat sebagai pengotor Untuk itu perlu dilakukan beberapa tahap aktifasi guna menghilangkan bahan pengotor tadi.
Pada penelitian ini zeolit alam Lampung diidentifikasi jenis dan kemumiannya dengan XRD yang menunjukkan bahwa zeolit Lampung terdiri dari jenis Klinoptilolit 73%, Mordenit 8% dan Analsim 14%. Aktifasi zeolit dengan menggunakan beberapa tahapan yaitu: pertukaran ion dengan arnonium nitrat, dehidrasi, kalsinasi, dealuminasi hidrotermal dan untuk menghilangkan Al non rangka dilakukan pencucian dengan lamtan asam Fluorida 0,5%.
Pengadukan selama 5 jam di dalam larutan Amonium Nitrat_ rnenghasilkan kapasitas pertukaran kation dengan kation-kation zeolit alam (Na', K°, Can, dan Mg'2) sampai dengan 42%, dilanjutkan dengan kalsinasi pada suhu 420°C, 520°C, 620°C dan 820°C, diperoleh H-zeolit. Setelah dealuminasi hidrotemial, rasio Si/A1 naik dan 3,56 menjadi 4,l7. Dari hasil analisa FTIR dapat ditentukan adanya ikatan antara molekul seperti ikatan NI-I4*-zeolit, ikatan struktur utama, ring ganda dan ikatan kelompok hidrosil pada serapan panjang gelombang yang tertentu. Dari analisa BET diperoleh luas permukaan zeolit alam sebesar 63 m2/gr_ Kalsinasi 420°C 5 jam menaikkan luas permukaan menjadi 90 m2/gr sedangkan pada kalsinasi 620°C menurunkan sarnpai 62 m2/gr. Setelah dealuminasi hidrotermal luas permukaannya menjadi 64 m2/gr. Analisa AAS menunjukkan kadar Cu sebesar 0,72% wt pada zeolit yang dlkalsinasi 420°C dan sebesar 0,26% wt pada zeolit yang didealuminasi hidrotemal.
Selanjutnya uji aktifitas zeolit yang telah dipreparasi untuk reaksi oksidasi parsial metana pada suhu 400°C-700°C tekanan 1 atm menghasilkan produk CO yang cendemng meningkat dengan meningkatnya suhu reaksi dan H20 sebagai produk samping yang cenderung menurun. Produk metanol sebesar 2,l% rnol procjuk dihasilkan pada suhu reaksi 500°C dari Cu/zeolit kalsinasi 420°C yang dilanjutkan dealuminasi hidrotermal 650°C 1 jam (konversi CH4 7%). Dari uji reaksi selama 12 jam, Cu/zeolit dengan rasio Si/A1 lebih besar, mempunyai stabilitas termal yang lebih tinggi."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48885
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Diyanto
"Dalam penelitian ini dilakukan sintesa fraksi hidrokarbon C3 dan C4 dari minyak jarak yang memiliki kandungan asam lemak tak jenuh yang lebih banyak dari CPO. Kandungan asam lemak tak jenuh yang memiliki ikatan rangkap ini memudahkan pemutusan ikatan lebih banyak oleh katalis, menghasilkan yield C3 dan C4 yang lebih banyak. Untuk menghasilkan fraksi C3 dan C4 dari minyak jarak digunakan metode perengkahan katalitik menggunakan katalis ZSM-5. Reaksi dilakukan secara tumpak pada fasa cair dan tekanan atmosferik selama 60 menit. Pada reaksi divariasikan suhu reaksi (320°C; 330°C;340°C) dan rasio massa katalis/SJO (1:75 dan 1:100). Produk gas dianalisis dengan GC sedangkan produk cair menggunakan FTIR Berdasarkan hasil penelitian, pada reaksi dengan suhu 340°C dan rasio katalis/SJO = 1:100 didapatkan hasil maksimum yaitu yield hidrokarbon C4 mencapai 12 %. Produk gas yang diperoleh kebanyakan berupa produk i-C4 dan n-C4 . Sedangkan produk C3 tidak diperoleh secara konsisten.

In this research, synthesis of hydrocarbon fraction C3 and C4 will be held using Jatropha Oil which has more unsaturated fatty acid compared to Crude Palm Oil. This content of unsaturated fatty acid will make it easier for the catalyst to cut the bond, producing more product of C3 and C4. To produce C3 and C4, catalytic cracking method is used with ZSM-5 catalyst. Reaction is performed in batch reactore in liquid phase with atmospheric pressure within 60 minutes. The temperature will be varied within 320°C; 330°C;340°C and the ratio of catalyst/SJO mass of 1:75 and 1:100. The gas product will be analyzed with GC and the liquid product with FTIR. According to the research, the maximum yield is obtained in the 340°C temperature and of catalyst/SJO mass of 1:100, with the result of 12%. The gas product mainly consist of i-C4 and n-C4. Whild the C3 product is not obtained consistently."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52230
UI - Skripsi Open  Universitas Indonesia Library
cover
Vino Hasyim
"Dalam penelitian ini telah dilakukan fabrikasi nanopartikel kompleks praseodimium(III)-EDTA (etilenadiaminatetraasetat) dengan metode represipitasi dan penguapan. Kristal besar dan nanopartikel kompleks Pr(III)-EDTA sebanyak 2% (b/b) digunakan sebagai komponen minor aktif pada preparasi katalis Pr(III)-EDTA/Zeolit dengan metode impregnasi pada suhu 60�C. Zeolit yang digunakan adalah zeolit alam aktif klinoptilolit. Pr(III)-EDTA/Zeolit digunakan sebagai katalis untuk meningkatkan bilangan oktana pada gasoline. Nanopartikel Pr(III)-EDTA hasil fabrikasi dikarakterisasi dengan Transmission Electron Microscopic (TEM). Data TEM menunjukkan nanopartikel yang diperoleh memiliki diameter antara 5,8 hingga 28,6 nm dan panjang 149,8 nm. Luas permukaan pada zeolit sebelum dimodifikasi adalah 30,9 m2/g. Setelah dimodifikasi dengan kristal besar Pr(III)-EDTA terjadi penurunan luas permukaan menjadi 24,1 m2/g sedangkan pada penambahan nanopartikel Pr(III)-EDTA menjadi 9,9 m2/g. Hal ini menunjukkan sebagian besar pori-pori zeolit banyak terisi oleh nanopartikel Pr(III)-EDTA dibanding dengan kristal besar Pr(III)-EDTA. Analisis XRF menunjukkan bahwa di dalam katalis dengan komponen aktif kristal besar Pr(III)-EDTA dan komponen aktif nanopartikel Pr(III)-EDTA terdapat Pr(III) masing-masing sebanyak 0,4175 % dan 0,5236 %.
Hasil ini membuktikan bahwa komponen aktif nano partikel lebih banyak masuk kedalam pori-pori zeolit klinoptilolit. Pengukuran bilangan oktana dengan octane meter SHATOX SX-200 menunjukkan peningkatan bilangan oktana pada gasoline untuk katalis kristal besar Pr(III)-EDTA/Zeolit dan katalis nanopartikel Pr(III)-EDTA/Zeolit masingmasing dari 88, 2 menjadi 89,2 dan 89,6 atau terjadi kenaikan 1 dan 1,4. Sedangkan penambahan katalis zeolit tanpa modifikasi meningkatkan bilangan oktana dari 88, 2 menjadi 88,8 terjadi kenaikan 0,6. Peningkatan bilangan oktana ini disebabkan adanya kenaikkan % peak area isooktana dan penurunan % peak area n-oktana di dalam gasoline yang ditunjukkan melalui analisis menggunakan GC-MS. Kemungkinan besar hal inilah yang meningkatnya bilangan oktana pada gasoline.Dari penelitian ini bisa disimpulkan bahwa katalis Pr(III)-EDTA dapat digunakan untuk meningkatkan bilangan oktana gasoline dengan keaktifan berturut-turut adalah katalis nanopartikel Pr(III)-EDTA/Zeolit, katalis kristal besar Pr(III)-EDTA/zeolit dan katalis zeolit.

In this research Pr(III)-EDTA (ethylene diamine tetra acetate) complex has been fabricated using reprecipitation and vaporization method. Bulk crystal Pr(III)-EDTA complex and nanoparticle 2 % (wt/wt) used as the active minor component for Pr(III)-EDTA/Zeolite catalyst preaparation through impregnation method at 60�C. Zeolite that used in this research is the natural active clinoptilolite zeolite. Pr(III)-EDTA/Zeolite use as catalyst for increasing the octane number of gasoline. The fabrication nanoparticle Pr(III)-EDTA result, characterized by Transmission Electron Microscopic (TEM). TEM result indicate that the obtained nanoparticle have 5.8-28.6 nm in diameter and 149.8 in length. Initial surface area of zeolite is 30.9 m2/g and after modification with bulk crystal Pr(III)-EDTA the surface area is decreasing to 24.1 m2/g addition meanwhile with nanoparticle Pr(III)-EDTA has decrease the surface area to 9.9 m2/g, where this indicate that most of zeolite pores filled more by nanoparticle Pr(III)-EDTA than bulk crystal Pr(III)-EDTA. XRF analysis shows that in catalyst with the active component nanoparticle Pr(III)-EDTA and bulk crystal Pr(III)-EDTA contain Pr(III) 0.4175% and 0.5236 % respectively.
The result proved that clinoptilolite zeolite pores has filled more by nanoparticle active component. The octane number measurement using octane meter SHATOX SX-200 give result the gasoline octane number increasing for bulk crystal Pr(III)-EDTA/zeolite catalyst and nanoparticle Pr(III)-EDTA/zeolite catalyst from 88.2 to 89.2 and 89.6 respectively or in the word it rise as much as 1 and 1.4. in another hand zeolite catalyst addition without modification increase octane number from 88.2 to 88.8 and rise as much as 0.6. This octane number increasing cause of the raising percentage of isooctane peak area and the reduction percentage of n-octane peak area in gasoline analyzed by GC-MS. It is likely being the causation of octane number increasing in gasoline. In conclusion, Pr(III)-EDTA catalyst can be used to increase octane number in gasoline with the activity in series nanoparticle Pr(III)-EDTA/zeolite catalyst, bulk crystal Pr(III)-EDTA/zeolite catalyst and zeolite catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S710
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3   >>