Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Ardi Ferdyhana
Abstrak :
Sistem pengendalian ketinggian air merupakan aplikasi yang umum digunakan dalam bidang industri otomasi. Aplikasi dari sistem ini berguna untuk menjaga nilai ketinggian air yang dibutuhkan dalam proses kontrol. Pada penelitian ini, sistem pengendalian ketinggian air dibuat dalam skala lab dengan menerapkan sistem kendali menggunakan reinforcement learning dengan policy gradient agent. Pada plant yang dibuat ini terdapat perangkat keras programmable logic controller (PLC), control valve, flow transmitter dan water level transmitter. Perangkat keras tersebut dihubungkan ke MATLAB dan Simulink menggunakan OPC server sebagai jalur komunikasi dua arah. Implementasi policy gradient agent pada sistem pengendalian ketinggian air digunakan dalam dua kondisi yaitu simulasi dan plant. Parameter yang digunakan untuk menentukan performa pengendalian adalah overshoot, rise time, dan settling time. Berdasarkan hasil pengendalian yang didapatkan, terdapat nilai overshoot yang cukup kecil, yaitu 0.38 % pada simulasi dan sebesar 2,92 % pada plant. ......Water level control system is a commonly used application in industrial automation. The application of this system is useful for maintaining the value of the water level needed in the control process. In this study, the water level control system was made on a lab-scale by implementing a control system using reinforcement learning with a policy gradient agent. In this plant, there is a programmable logic controller (PLC), control valve, flow transmitter, and water level transmitter. The hardware is connected to MATLAB and Simulink using an OPC server as a two-way communication line. The implementation of the policy gradient agent in the water level control system is used in two conditions, namely simulation and plant. The parameters used to determine the control performance are overshoot, rise time, and settling time. Based on the control results obtained, there is a fairly small overshoot value, namely 0.38% in the simulation and 2.92% in the plant.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Early Radovan
Abstrak :
Penelitian ini menyimulasikan sistem pengendalian temperatur dan ketinggian air pada sistem pengendali MIMO, yang bekerja dengan cara mengendalikan debit air dingin dan air panas untuk menghasilkan temperatur dan ketinggian air yang diinginkan. Simulasi ini dilakukan dengan menggunakan pengendali Reinforcement Learning dengan algoritma Proximal Policy Optimization (PPO) pada Simulink MATLAB. Tujuan dari penelitian ini, sistem dapat menjaga temperatur campuran dan ketinggian air yang terukur agar tetap berada di daerah set point yang ditentukan. Hasil training pengendali PPO diuji dengan melakukan perubahan set point, baik penambahan nilai ataupun pengurangan nilai set point. Pada penelitian ini diasumsikan bahwa proses pencampuran temperatur terdistribusi secara sempurna dan tangki tidak menyerap kalor. Penelitian ini memiliki batasan dimana temperatur air dingin 25℃ dan air panas 90℃ serta ketinggian maksimum tangki sebesar 7,5 dm. Kemampuan agent PPO dilihat dari beberapa parameter seperti overshoot, settling time, rise time, dan error steady state sebagai data kualitatif. Berdasarkan hasil simulasi, secara keseluruhan agent PPO meiliki hasil settling time dan rise time yang berbanding lurus dengan banyaknya perubahan set point. Nilai error steady state tertinggi sebesar 0.98%, terjadi pada pengendalian ketinggian air. Sedangkan nilai overshoot tertinggi sebesar 1,02% dan terjadi pada pengendalian ketinggian air juga. ......This research simulates water level and temperature control system on MIMO control system, which works by controlling the flow of cold water and hot water to produce the desired temperature and water level. This simulation is carried out using Reinforcement Learning with Proximal Policy Optimization algorithm on Simulink MATLAB. The purpose of this research, the system can maintain measured temperature of mixture and water level in order to remain in the set point area. The results training of the PPO controller set point, either adding or reducing the set point. In this study, it is assumed that the temperature mixing process is perfectly distributed and the tank does not absorb heat. This research has a limit where the temperature of cold water is 25 and hot water is 90, and the maximum height of the tank is 7.5 dm. The ability agent of the PPO can be seen from overshoot, settling time, rise time, and steady state error as qualitative data. Based on the result of simulation, overall the agent PPO has settling time and rise time that is directly proportional to the number of changes at set point. The highest value of steady state error is 0.98%, occurred in controlling water level. While the highest value of overshoot is 1.02% and occurs in controlling water level as well.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ziyad Ain Nur Rafif
Abstrak :
Sistem coupled-tank merupakan konfigurasi yang digunakan pada industri dalam hal pengendalian ketinggian air, biasanya dengan metode pengendalian proportional, integral, derivative (PID). Namun, metode lain seperti reinforcement learning (RL) juga bisa diterapkan. Metode RL dapat dikombinasikan dengan programmable logic controller (PLC) yang sering digunakan dalam proses industri. PLC mengontrol ketinggian air dengan membaca data dari water level transmitter dan mengatur bukaan control valve berdasarkan algoritma RL yang sudah dilatih untuk mencapai kontrol optimal. Algoritma RL yang digunakan adalah twin-delayed deep deterministic (TD3) policy gradient. Performa algoritma ini diukur menggunakan parameter seperti overshoot, rise time, settling time, dan steady-state error, lalu dibandingkan dengan pengendali PID konvensional. Hasil simulasi dan pengujian pada hardware menunjukkan bahwa algoritma RL menghasilkan overshoot sebesar 6.59% dan steady-state error sebesar 3.53%, di mana steady-state error ini terjadi karena sensor yang sensitif sehingga data ketinggian air tidak pernah terekam konstan dan stabil. Sebagai perbandingan, pengendali PID memiliki overshoot sekitar 23.38% dan steady-state error terkecil berkisar pada 7.15%, yang berarti pengendali RL sudah memiliki performa yang lebih baik dibandingkan pengendali PID. ......Coupled-tank system is a configuration commonly used in industry, mainly for water level control with proportional, integral, and derivative (PID) control method. But, other methods like reinforcement learning (RL) can be implemented for this control problem. This RL method can be combined with programmable logic controller (PLC) which is often used in industry process. PLC will control water level by reading data from water level transmitter and controlling a control valve opening according to a trained RL algorithm to gain an optimal control. The RL algorithm used is twin-delayed deep deterministic (TD3) policy gradient. The algorithm’s performance will be measured by parameters such as overshoot, rise time, settling time, and steady-state error, and then compared with the conventional PID control method. According to the results from simulation and from the real hardware, the overshoot value that happens is only in the range of 6.59% with the smallest steady-state error value ranged around 3.53%, which happens due to the sensitive sensor so that water level data never recorded at a constant and stable state. For comparison, the PID control has an overshoot around 23.38% and smallest steady-state error around 7.15%, which means that the RL control method has a better performance than the PID control method.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dito Tunjung Parahyta
Abstrak :
Proses Thermal Mixing adalah jenis dari proses pencampuran yang penting di berbagai industri, seperti industri pangan, pupuk, farmasi, material sampai petrochemical. Proses Thermal Mixing merupakan proses Multi input multi ouput (MIMO), karena bekerja dengan mengendalikan dua flow air panas dan air dingin untuk mengendalikan temperatur dan level campuran. Meskipun memiliki respon yang kurang baik untuk mengendalikan MIMO, namun PID masih banyak digunakan karena kesederhanaannya. Algoritma non konvensional yang lebih baik seperti fuzzy control memiliki kerumitan yang tinggi dibanding PID. Algoritma Adaptive Fuzzy PID Controller (AFPIDC) merupakan gabungan dari keduanya, memiliki basis PID yang cukup sederhana namun ditambahkan aspek Fuzzy untuk mempercepat pengendalian dengan cara mengubah konstanta PID secara real-time (on the fly). Algoritma AFPIDC ini diterapkan pada simulasi sistem pengendalian temperatur dan level air pada proses water Thermal Mixing dan dilakukan pada program MATLAB/SIMULINK di PC. Fuzzy yang digunakan memiliki dua input berupa error dan perubahan error, dan memiliki tiga output berupa perubahan nilai konstanta PID. Pengujian sistem dilakukan dengan simulasi perubahan setpoint dan gangguan berupa kebocoran flow. Dari hasil pengujian sistem, pengendali AFPIDC memiliki performa yang lebih baik dari PID dalam mengendalikan temperatur dan level pada sistem. Dalam pengendalian temperatur, didapatkan nilai settling time PID sebesar 830 detik, AFPIDC sebesar 328 detik dan untuk nilai overshoot PID 6,3% dan AFPIDC 0%. Untuk pengendalian level didapatkan settling time PID 3221 detik dan AFPIDC 235 detik dengan nilai overshoot PID 10,5% dan AFPIDC 0%. Dari pengujian sistem terhadap gangguan kebocoran, pengendali temperatur membutuhkan waktu untuk kembali stabil pada PID 780 detik, AFPIDC 250 detik. Sedangkan untuk pengendalian level untuk kembali stabil membutuhkan waktu PID 4510 detik, AFPIDC 225 detik.
The Thermal Mixing Process is a type of mixing process that is important in various industries, such as the food, fertilizer, pharmaceutical, material to petrochemical industries. The Thermal Mixing Process is a multiple-input multiple-output process (MIMO), because it works by controlling hot water and cold-water flows to control the temperature and level of the mixture. Although it has a poor response to control MIMO system, PID is still widely used because of its simplicity. There are some better control algorithm, such as fuzzy control, but have higher complexity than PID. The Adaptive Fuzzy PID Control (AFPIDC) algorithm is a combination of the two, has a simple PID basis with added Fuzzy aspects to speed up control by changing the PID constant in realtime. The AFPIDC algorithm is applied to the simulation of temperature and water level control systems in the process of water Thermal Mixing and is done on the MATLAB/SIMULINK program on a PC. The fuzzy algorithm uses two inputs in the form of errors and changes in errors and has three outputs in the form of changes in the value of the PID constant. System testing is done by simulating setpoint changes and disruption in the form of leakage flow. From the results of system testing, AFPIDC controllers have better performance than PID in controlling temperature and level in the system. In temperature control, the PID settling time is 830 seconds, AFPIDC is 328 seconds and the PID overshoot is 6,3% and AFPIDC is 0%. In level control, the settling time of PID is 3221 seconds while AFPIDC is 235 seconds with PID overshoot is 10,5% while AFPIDC 0%. From testing the system with leakage disturbance, the temperature controller needs time to regain stability at PID 780 seconds, AFPIDC 250 seconds. Meanwhile the level controlling stabilizes at PID 4510 seconds, and AFPIDC at 225 seconds.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aristia Reyhan Rafandi Betha
Abstrak :
Beragam kebutuhan industri, membuat jenis-jenis proses pada industri pengolahan menjadi beragam dengan berberapa parameter input dan output, salah satunya adalah proses thermal mixing yang menggunakan sistem multi input multi output. Thermal mixing atau continuous stirred-tank reactor mengendalikan 2 aliran dengan temperatur berbeda kedalam tanki pencampur sehingga mendapat temperatur dan ketinggian tangki sesuai yang diinginkan. pada penelitian ini telah dirancang sistem pengendali berbasis logika fuzzy pada pengendalian temperatur dan level. Penelitian ini sistem logika fuzzy menngunakan 2 input dan 1 output unutk masing-masing parameter pengendalian. 2 input fuzzy set menggunakan nilai error dan change of error. Setiap fuzzy set menngunakan 7 membership function yaitu negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), dan positive big (PB). Sistem dapat melakukan pengendalian temperatur dan level sesuai yang diinginkan. Sistem ini menggunakan simulasi berbasis aplikasi MATLAB Simulink. Berdasarkan hasil simulasi, dapat disumpulkan bahwa pengendalian menggunakan fuzzy logic controller lebih baik dibandingkan pengendalian PID. Hasil pengendalian fuzzy memiliki rata-rata rise time dan settling time yang lebih cepat dan tidak memiliki overshoot.
A variety of industrial needs, making the types of processes in the processing industry to be diverse with several input and output parameters, one of which is a thermal mixing process that uses a multi-input multi output system. Thermal mixing or continuous stirred-tank reactor controls 2 streams with different temperatures into the mixing tank so that the temperature and height of the tank are as desired. In this research a fuzzy logic based controller system has been designed for controlling temperature and level. This study uses a fuzzy logic system using 2 inputs and 1 output for each control parameter. 2 fuzzy input sets use error and change of error values. Each fuzzy set uses 7 membership functions, namely negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), and positive big (PB). The system can control the temperature and level as desired. This system uses a simulation based on the MATLAB Simulink application. Based on the simulation results, it can be concluded that the control using fuzzy logic controller is better than PID control. Fuzzy control results have a faster average rise time and settling time and do not have overshoot.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
Di Goa Bribin, Kecamatan Semanu, Kabupaten Gunung Kidul, Yogyakarta terdapat sungai bawah tanah yang cukup besar debitnya. Aliran sungai tersebut tidak pernah kering sepanjang musim dan telah dimanfaatkan oleh pemerintah daerah sebagai sumber air minum. Oleh karena itu, perlu dilakukan pemetaan terhadap distribusi aliran sungai bawah tanah tersebut di tempat lain. Sebelum pemetaan dilakukan, dicari metode geofisika yang tepat digunakan untuk mendeteksi keberadaan sungai tersebut dengan akses akuisisi mudah, cepat dan murah. Mengingat morphologi dan topographi lapangan yang cukup berat maka metode geofisika yang diuji cobakan adalah metode eletromagnetik very low frequency (VLF). Dari kajian awal ini dihasilkan bahwa metode VLF memberikan respons cukup baik terhadap sungai bawah tanah setelah data pengukuran tilt dihaluskan (smoothing) dengan moving average order 5
JURFIN 7:20 (2003)
Artikel Jurnal  Universitas Indonesia Library