Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Arif Wahyu Adi
Abstrak :
Heat Recovery Steam Generator (HRSG) merupakan peralatan yang berfungsi untuk mengubah air menjadi uap pada temperatur dan tekanan tertentu. Peralatan ini terdapat pada Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) yang menggunakan siklus kombinasi (Combined Cycle). Pada HRSG terdapat daerah superheater-1 dan superheater-2, yang merupakan daerah pemanas uap lanjut. Daerah superheater ini terdiri dari susunan pipapipa yang bekerja pada temperatur dan tekanan tinggi dengan kondisi operasi yang korosif secara terus-menerus. Kondisi ini bisa mempengaruhi dan mengubah sifat-sifat material pipa. Penelitian ini dilakukan untuk mengetahui penyebab terjadinya kerusakan pipa superheater-2 HRSG 2 PLTGU Muara Karang yang baru beroperasi 5 tahun, tetapi telah mengalami kerusakan pipa yang cukup parah. Penelitian yang dilakukan mencakup fraktografi, metalografi, penentuan distribusi karbon, pemeriksaan komposisi kimia pipa, pemeriksaan produk korosi dan pengukuran kekerasan. Dari basil penelitian yang dilakukan dapat diambil beberapa kesimpulan. Pertama, kerusakan pipa superheater-2 HRSG 2 PLTGU Muara Karang disebabkan oleh korosi pitting (pitting corrosion). Serangan korosi ini disebabkan oleh kombinasi tiga faktor, yaitu : adanya air yang tertinggal di dalam pipa selama unit shutdown, adanya kebocoran udara luar masuk ke dalam pipa dan terjadinya kerusakan lapisan film oksida pelindung (protective film meta/ oxide atau protective oxide film) dari logam dasar di dalam pipa. Kedua, adanya deposit yang mengandung Cr mengindikasikan adanya pelepasan Cr dari material pipa. Ketiga, ditemukan terjadinya presipitasi karbida. Keempat, hasil pengamatan terhadap struktur mikro pipa superheater-2 dan pengujian terhadap kekerasannya menunjukkan telah terjadi proses dekarburasi, tetapi masih belum sampai pada taraf yang membahayakan. ......Heat Recovery Steam Generator (HRSG) is the component of Combined Cycle Power Plant which produce steam. The HRSG have two super heater areas namely superheater-1 and superheater-2. There are many tubes in each area. In superheater-2 area, the tubes always work in high temperature and high pressure with a very corrosive condition, so make their behavior to be changed. By this research we want to examine a failure section of the superheater-2 tubes taken from the HRSG 2 Muara Karang Combined Cycle Power Plant, which was five years operation but have many damage on their tubes. The result of this research finds some conclusion. First, the superheater failure was due to formation of highly aggressive differential aeration cells causing pitting corrosion, also known as oxygen pitting corrosion. This common corrosion problem was caused by the combination of three factors inside the tubes : water left in the superheater tube during shutdown, air leakage into the tube, and damage to the protective oxide film over the base metal in the interior of the tube. Second, deposits of chromium were found in the superheater tubes - that is an indication of chrom leaching from the pipes. Third, actual carbide presipitation phenomena in the superheater tubes. Last, the microstructure analysis and micro hardness testing of the superheater-2 tubes determined some de-carbonation process in the tubes, but it is still small.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2001
T813
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1992
S35815
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bondan Adinugroho
Abstrak :
Kebutuhan listrik dan uap air di Fasilitas Gas Processing Kilang LNG Arun sebesar 158.400.000 kWh/tahun dan uap air 180 ton/jam (TPH) dihasilkan dari 3 (tiga) unit Gas Turbine Generator (GTG) dan 3 (tiga) unit Heat Recovery Steam Generator (HRSG) di Unit pembangkit U-90 di Perta Arun Gas (PAG). Permasalahan dari pembangkitan listrik dan uap saat ini adalah kebutuhan bahan bakar yang besar yaitu 13,14 MMSCFD untuk memproses 30 MMSCFD gas sales. Ketersediaan suku cadang (usang), dan beberapa kali terjadi gangguan operasi (blackout) juga menjadi permasalahan pembangkit eksisting. Tujuan dari penelitian ini adalah untuk memisahkan dari GTG dan HRSG eksisting dan membangun unit pembangkitan baru di Fasilitas Gas Processing Kilang LNG Arun dengan unit pembangkitan listrik dan uap air yang lebih efisien dan tingkat avai;abilitas yang tinggi. Penggantian dilakukan dengan berbagai alternatif yaitu pembelian unit GTG & HRSG + Boiler baru, pembelian unit Gas Engine Generator (GEG) & HRSG + Boiler baru, dan penyambungan listrik ke PLN (Perusahaan Listrik Negara) + Boiler. Salah satu hasil dari penggantian pembangkit adalah dengan penggunaan GTG & HRSG + Boiler baru akan memerlukan bahan bakar gas sebesar 12,88 MMSCFD, dimana terdapat efisiensi gas sebesar 0,26 MMSCFD, dan dengan penambahan biaya pembelian unit dan biaya pemeliharaan akan mendapatkan tarif pembangkitan listrik sebesar 0,221 $/kWh dan tarif pembangkitan uap air sebesar 0,0019 $/ton/tahun dengan metode keeokonomian cash flow. Penggantian GTG dan HRSG eksisting akan lebih ekonomis jika dilakukan kegiatan penurunan uap air di Fasilitas Gas Processing Kilang Arun, hal ini dikarenakan alternatif pembangkitan pengganti membutuhkan konsumsi bahan bakar gas untuk menghasilkan uap air lebih besar dibandingkan dengan pembangkitan listrik. ......The demand for electricity and steam at the Arun LNG Refinery Gas Processing Facility is 158,400,000 kWh / year and 180 tons / hour of water vapor (TPH) is produced from 3 (three) units of Gas Turbine Generator (GTG) and 3 (three) units of Heat Recovery Steam Generator (HRSG) at the U-90 generating unit at Perta Arun Gas (PAG). The problem with electricity and steam generation today is the large fuel requirement, namely 13.14 MMSCFD to process 30 MMSCFD of gas sales. The availability of spare parts (obsolete), and several times the operation interruption (blackout) is also a problem in the existing plant. The purpose of this research is to separate from the existing GTG and HRSG and build a new generation unit at the Arun LNG Refinery Gas Processing Facility with a more efficient electricity and steam generation unit and a high level of availability. Replacement is carried out with various alternatives, namely the purchase of a new GTG & HRSG + Boiler unit, the purchase of a new Gas Engine Generator (GEG) & HRSG + Boiler unit, and connecting electricity to PLN (State Electricity Company) + Boiler. One result of the replacement of the generator is that with the use of GTG & HRSG + the new boiler will require a gas fuel of 12.88 MMSCFD, where there is a gas efficiency of 0.26 MMSCFD, and with the addition of unit purchase costs and maintenance costs will get electricity generation tariff of 0.221 $ / kWh and steam generation tariff of 0.0019 $ / ton / year using the cash flow economic method. Replacement of the existing GTG and HRSG will be more economical if steam reduction activities are carried out at the Arun Refinery Gas Processing Facility, this is because the alternative generation of replacement requires higher gas fuel consumption to produce steam compared to electricity generation.
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Irfan Fawzi
Abstrak :
ABSTRAK
Energi listrik merupakan kebutuhan masyarakat. Seiring berjalannya waktu, kebutuhan listrik semakin meningkat. Heat Recovery Steam Generator HRSG merupakan salah satu alat yang sangat penting dalam PLTGU. Kegagalan atau kerusakan pada HRSG tentu menjadikan unit PLTGU tidak efektif dalam menghasilkan listrik. Pada Penelitian ini dengan menggunakan metode FMEA Failure Mode and Effect Analysis bertujuan untuk menentukan, mengklasifikasikan dan menganalisa mode kegagalan. Sebagai hasil dari perkalian S severity , O occurrence , dan D detection sehingga diperoleh RPN Risk Priority Number . Hasil FMEA diperoleh 10 mode kegagalan kritis dari 26 mode kegagalan yang terjadi. Urutan RPN tertinggi adalah 245 Pada Superheater dengan mode kegagalan : bocor pada tube , RPN 216 Pada economizer dengan mode kegagalan bocor pada tube , kemudian RPN 210 Pada Superheater dengan mode kegagalan : bocor pada U-Bend , dan tujuh kegagalan lainnya. Tindakan penanganan risiko dilakukan untuk kesepuluh mode kegagalan tersebut.
ABSTRAK
Nowadays, Electricity is an important needs people. By the time, people needs of electricity increasing. Heat Recovery Steam Generator HRSG has important role as a part of PLTGU stands for Integrated Gasification Combined Cycle Plants . HRSG rsquo s failures or damages surely impact on ineffectively electricity producing by PLTGU. This research, using Failure Mode and Effect Analysis FMEA , aims to determine, classify, and analyze failure modes. As the result of S Severity , O Occurrence , and D Detection multiplication, RPN Risk Priority Number would be achieved. FMEA result shows that 10 critical failure modes occurs from 26 failure modes. The highest RPN is 245 in Superheater with failure mode tube leakage , after that is RPN 216 in Economizer with failure mode tube leakage , then RPN 210 in Superheater with failure mode U Bend leakage , and the seven other failures. Risk Treatments are being held for the 10 failure modes.
2017
S67830
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robby Muliadi
Abstrak :
Skripsi ini membahahas studi analisis kinerja dari mesin propulsi kapal LNG Tanker menggunakan Combined cycle yang komponennya terdiri dari Turbin gas, Turbin uap, dan Heat recovery steam generator HRSG . Langkah pertama adalah menentukan hambatan tipikal dari kapal LNG Tanker 125.000 m3 menggunakan software ldquo;Maxsurf Resistance 20 rdquo; kemudian dirancang sistem propulsi untuk memenuhi kebutuhan daya dari hambatan tersebut menggunakan software ldquo;Cycle Tempo 5.0 rdquo; dari hasil simulasi didapatkan daya maksimum sistem sebesar 28122.23 kW dengan konsumsi bahan bakar 1.173 Kg/s dan effisiensi sistem sebesar 48.49 pada kondisi muat, kapal dapat mencapai kecepatan 20.67 knot.
This study explains about performance analysis of a propulsion system engine of an LNG Tanker Ship using Combined Cycle which the components are Gas Turbine, Steam Turbine and Heat Recovery Steam Generator. The first step is to determine the general resistance of an LNG Tanker Ship 125.000 m3 by using Maxsurf Resistance 20 then designing the propulsion system to fulfill the necessary power from the resistance by using Cycle Tempo 5.0 software. The simulation results can indicate the maximum power of system about 28122.23 kW with the fuel consumption about 1.173 Kg s and the system efficiency about 48.49 in full loaded condition, the ship speed can reach up to 20.67 knot.
Depok: Universitas Indonesia, 2017
S68162
UI - Skripsi Membership  Universitas Indonesia Library