Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Abstrak :
Residue of methanolic extraxt of egyption jatropha cureas contains bioactive substances such as phenolic compounds, which succeded to be used natural antioxidants for the protection of oils and their corresponding biodisel againts oxidative deteration....
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
[Dalam penelitian ini dilakukan proses ozonasi berbasis minyak bunga matahari yang berfungsi sebagai desinfektan terhadap bakteri Pseudomonas aeruginosa. Proses ini dilakukan selama 36 dan 72 jam dengan pengambilan sampel setiap 12 jam. Proses ozonasi minyak bunga matahari dilakukan menggunakan ozonator komersial hasil rancangan serta reaktor yang terbuat dari bahan stainless steel dengan kapasitas 2,2 L dilengkapi dengan pressure gauge, termokopel, pengaduk, cooling jacket, dan kaca pengintip. Reaksi ozon dengan ikatan rangkap akan menghasilkan senyawa ozonida, trioksolan, peroksida. Kondisi reaksi dijaga pada suhu 15-22oC. Hasil pengujian parameter kualitas ozonolisis dilakukan dengan metode bilangan iod sebesar 130,5;126;120,5 pada 0, 36 dan 72 jam. Metode bilangan asam sebesar 0,490;3,153;3,780 pada 0, 36, dan 72 jam, metode bilangan peroksida sebesar 0;8,7077;13,965 pada 0, 36, dan 72 jam. Pengukuran viskositas pada 0, 36, dan 72 jam adalah 44,26;66,64;75,95. Pengukuran pH pada 0, 36, dan 72 jam adalah 6;1;1 masing-masing. Analisis FT-IR menghasilkan penurunan %T untuk setiap gugus fungsi. Hasil yang diperoleh minyak bunga matahari terozonasi memiliki efek desinfektan terhadap bakteri Pseudomonas aeruginosa dengan menghasilkan zona hambat sebesar 9,79 mm., This research, based on ozonation process sunflower oil that serves asa a desinfectant against bacteria Pseudomonas aeruginosa. This process is carried out for 36 and 72 hours with sampling every 12 hours. Sunflower oil ozonation process is done using a commercial ozonator as well as the design of the reactor is made of stainless steel with a capacity of 2.2 L equipped with a pressure gauge, thermocouple, stirrer, cooling jacket, and glass peeping. The reaction of ozone with doube bonds will produce compounds ozonida, trioksolan, peroxides. The reaction conditions are maintained at a temperature of 15-19oC. Ozonolysis quality testing results conducted by the method of iod number is 130.5, 126, 120.5 at 0, 36, and 72 hours respectively. Methode of acid value is 0.490, 3.153, 3.780 at 0, 36, and 72 hours respectively, method of peroxide value is 0, 8.707, 13.965 at 0, 36 and 72 hours respectively. Viscosity measurement at o, 36 and 72 hours is 44.26, 66.64, 75.95 respectively. pH measurement at o, 36 and 72 hours is 6, 1, 1 respectively. FT-IR analysis resulted in a decrease % T for each functional group. The results obtained are sunflower oil ozonated has a desinfectant effect against bacteria Pseudomonas aeruginosa at 72 hours with resulted in inhibition zone of 9,79 mm.]
Fakultas Teknik Universitas Indonesia, 2014
S58825
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagas Zaki Muhammad
Abstrak :

Indonesia sebagai salah satu negara tropis terbesar di dunia dengan hutan seluas 125.922.474 hektar memiliki sumber daya hutan yang melimpah termasuk berbagai sumber minyak nabati salah satunya adalah lemak tengkawang. Lemak dari tengkawang ini bernilai cukup tinggi karena kandungan asam lemaknya, nilai ekonominya pun  jauh meningkat apabila buah tersebut diolah menjadi lemak daripada hanya dijual dalam bentuk buah kering. Lemak tengkawang dapat berperan sebagai pengganti lemak kokoa karena sifatnya yang serupa. Metode yang digunakan oleh masyarakat setempat untuk mendapatkan mentega tengkawang ini masih tradisional sehingga kualitas produksinya belum dapat memenuhi Standar Nasional Indonesia (SNI). Penelitian yang ada menunjukkan bahwa parameter SNI yang belum dapat dicapai adalah asam lemak bebas dan warna tengkawang. Penelitian ini bertujuan untuk menurunkan kadar beta karoten pada lemak tengkawang dalam rangka mendapatkan warna yang sesuai SNI dan menurunkan bilangan peroksida pada lemak tengkawang dengan penambahan adsorben bentonit teraktivasi termal pada proses pemucatan. Penelitian ini melakukan purifikasi mentega tengkawang dengan melalui tiga langkah yaitu praperlakuan lemak tengkawang, aktivasi bentonit serta analisis RSM. Praperlakuan lemak tengkawang ini terdiri dari degumming dan netralisasi. Proses pemucatan dilakukan dengan bentonit yang diaktivasi secara termal pada variable tertentu. Variabel yang diamati adalah pengaruh suhu aktivasi, waktu aktivasi dan rasio bentonit:lemak tengkawang.. Analisis RSM digunakan untuk melihat signifikasi pengaruhi variable tersebut terhadap kadar beta-karoten dan bilangan peroksida pada lemak tengkawang. Didapatkan bahwa penambahan bentonit teraktivasi termal pada proses pemucatan lemak tengkawang terbukti menurunkan kadar beta karoten dari 114 μg/mL menjadi 13 μg/mL, dan menurunkan bilangan peroksida dari 9.7 mek O2/kg sampek menjadi 4.87 mek O2 kg sampel. Meskipun begitu variasi yang dilakukan pada variabel terikat tidak memiliki efek signifikan terhadap perubahan kandungan beta karoten dan bilangan peroksida

 


Indonesia is one of the largest tropical countries in the world with 125,922,474 hectares of forest having abundant forest resources including a source of vegetable oil, one of which is tengkawang fat. The fat content of tengkawang is quite high because of its fatty acid content, its economic value is far increased compared to the fruit processed into fat from only being sold in the form of dried fruit. The fat can be consumed as cocoa fat because of its similar nature. The method used by the local community to obtain tengkawang butter is still traditional so that the quality of the product does not meet the Indonesian National Standard (SNI). Existing research shows that SNI parameters that have not been achieved are free fatty acids and tengkawang colors. This study tried to reduce the levels of beta carotene in tengkawang fat in order to obtain the appropriate color of SNI and reduce the peroxide number in tengkawang fat by increasing the adsorbent of thermally activated bentonite in the bleaching process. This study purified tengkawang butter with three steps, namely pretreatment of tengkawang fat, activating bentonite and RSM analysis. This treatment of tengkawang fat consists of degumming and neutralization. The bleaching process is carried out with thermal bentonite with certain variables. The variables are the activation temperature, activation time and bentonite-tengkawang fat ratio. RSM analysis is used to see the significance of influencing this variable on beta-carotene levels and peroxide numbers in tengkawang fat. It was found that replacing thermal bentonite in the tengkawang fat bleaching process was shown to reduce beta carotene levels from 114 μg / mL to 13 μg / mL, and reduce peroxide numbers from 9.7 meq O2 / kg to 4.87 meq of O2 kg sample. Even so the variations carried out in the bound variable do not have a significant effect on changes in the content of beta carotene and peroxide numbers

 

Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Giffari Rachmat
Abstrak :
Biodiesel adalah bahan bakar alternatif sebagai solusi dari krisis solar konvensional. Namun pabrik biodiesel di Indonesia saat ini masih menggunakan teknologi proses produksi dengan efisiensi yang rendah. Ketidakefisienan ini mengakibatkan pemborosan dari segi energi, bahan baku, air, dan emisi karbondioksida yang besar. Sehingga pada waktu yang akan datang akan mengganggu kelestarian lingkungan hidup. Proses produksi yang tidak efisien ini juga mengakibatkan biaya produksi yang mahal dan kurang menguntungkan dari segi ekonomi. Untuk mengatasi kekurangan dari pabrik biodiesel ini, maka perlu diterapkan konsep industri hijau. Penerapan konsep industri hijau dilakukan menggunakan bantuan program simulator dimana akan dibandingkan dan dianalisa antara skema proses produksi konvensional dan skema proses produksi termodifikasi. ......Biodiesel is an alternative fuel as a solution to the risis of conventional diesel. However, biodiesel plants in Indonesia are still using production process technology with low efficiency. This inefficiency results in wastage in terms of energy, raw materials, water, and high level of carbon dioxide emission. So that in the future would interfere with environmental sustainability. Inefficient production processes also resulted in expensive production costs and a less favorable economic terms. Waste and emissions from the plant has not been handled properly due to lack of attention from the management company. To overcome the shortcomings of this biodiesel plant, it is necessary to apply the concept of green industry. The implementation of green industry concept will be done by using simulator program then will be compared and analysed between conventional production process scheme and modificated production process scheme.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67866
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alya Hafiza Vivadinar
Abstrak :
Pada penelitian ini, dilakukan analisis aspek teknis, lingkungan, dan ekonomi pada proses produksi Hydrogenated Vegetable Oil (HVO) dengan hidrogen dari Steam Methane Reforming (SMR), Gasifikasi Biomassa (BG), Elektrolisis dengan Pembangkit Listrik Panas Bumi (GEO-E), dan Elektrolisis dengan Pembangkit Listrik Panel Surya (PV-E). Tujuan dari penelitian ini adalah mendapatkan efisiensi energi, faktor emisi, serta biaya produksi HVO dari teknologi hidrogen yang berbeda-beda. Seluruh teknologi disimulasikan menggunakan Aspen Plus® dengan fluid package Peng-Robinson. HVO diproduksi menggunakan dua reaktor, yaitu reaktor hydrotreating dan reaktor hidroisomerisasi dan menghasilkan tiga produk, yaitu HVO, green naphtha, dan bio-jet fuel. Proses produksi hidrogen menggunakan BG menggunakan bahan baku empty fruit bunch (EFB). Sedangkan pasokan listrik untuk elektrolisis didapat dari GEO-E dengan sitem kombinasi ORC dan Flash. Pasokan listrik untuk elektrolisis dengan PV-E dilengkapi dengan baterai. Analisis teknik dilakukan dengan menghitung efisiensi energi produksi HVO. Analisis ekonomi dilakukan dengan menghitung biaya produksi HVO dengan metode Levelised Cost of Energy (LCOE). Analisis lingkungan dilakukan dengan menghitung emisi CO2-e dengan metode Life Cycle Analysis. Hasil analisis memperlihatkan bahwa produksi HVO dengan efisiensi terbaik didapat dari hidrogen hasil SMR dengan efisiensi 55,67%, yang diikuti oleh BG (31,47%), PV-E (9,34%), dan GEO-E (7,89%). LCOE terendah juga masih membutuhkan produksi hidrogen dari SMR dengan LCOE sebesar $15,79/GJ-HVO, yang diikuti oleh BG ($16,37/GJ-HVO), GEO ($22,83/GJ-HVO), dan PV ($27,29/GJ-HVO). Akan tetapi, produksi HVO yang paling ramah lingkungan menggunakan GEO-E sebagai teknologi produksi hidrogen dengan faktor emsisi sebesar 1,63 kgCO2-e/kg HVO, yang diikuti oleh PV-E (1,86 kgCO2-e/kg HVO), SMR (5,57 kgCO2-e/kg HVO), dan BG (16,52 kgCO2-e/kg HVO). ......Study is done from the perspective of technicality, environment, and economical for Hydrogenated Vegetable Oil (HVO) production with hydrogen from Steam Methane Reforming (SMR), Biomass Gasification (BG), Geothermal Electrolysis (GEO-E), and Solar Photovoltaic Electrolysis (PV-E). The purpose of this study is to evaluate the energy efficiency, emission factors, and cost production of HVO production from various hydrogen production technologies, mentioned above. Every production technology is simulated using Aspen Plus® using the Peng-Robinson fluid package. HVO is produced by two reactors, which are hydrotreating reactor and hydroisomerisastion reactor. The process produces three main products, HVO, green naphtha, dan bio-jet fuel. Feedstock to produce hydrogen from BG is Empty Fruit Bunch (EFB). Electricity production via geothermal for electrolysis uses combination of Organic Rankine Cycle (ORC) and flash system. While the electricity produced using Solar Photovoltaic is equipped with battery. Technical analysis is done by calculating the energy efficiency from overall system energy flow. Production cost is calculated using the Levelised Cost of Energy (LCOE) to analyse the economical aspect. CO2-e emission is determined using the Life Cycle Analysis (LCA) method to analyse the environmental aspect. Study has shown that HVO production with SMR as the hydrogen production technology has the highest energy efficiency (55,67%), which then followed by BG (31,47%), PV-E (9,34%), and GEO-E (7,89%). The lowest LCOE can be obtained if the hydrogen is obtained from SMR aswell (15,78/GJ-HVO), which is followed by BG ($16,37/GJ-HVO), GEO ($22,83/GJ-HVO), and PV ($27,29/GJ-HVO). However, HVO production with the lowest emission factor is equipped with GEO-E (1,63 kgCO2-e/kg HVO), which followed by PV-E (1,86 kgCO2-e/kg HVO), SMR (5,57 kgCO2-e/kg HVO), and BG (16,52 kgCO2-e/kg HVO).
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Zata Amalia
Abstrak :

Pelumas dasar bio adalah pelumas dasar yang diperoleh dari bahan-bahan hayati seperti minyak nabati. Pelumas berbasis minyak nabati dapat memenuhi kriteria baik dari fungsi maupun lingkungan, tetapi tidak dapat digunakan secara langsung sebagai pelumas karena memiliki kinerja yang buruk pada suhu rendah serta memiliki kestabilan termal dan oksidasi yang buruk, sehingga digunakan berbagai metode untuk meningkatkan kinerja, memperbaiki sifat dan karakteristik dari minyak nabati tersebut (Annisa & Widayat, 2018). Salah satu metode yang digunakan adalah modifikasi kimia. Modifikasi kimia merupakan modifikasi yang dilakukan pada minyak nabati melalui reaksi kimia (Rudnick, 2013). Metode modifikasi kimia pada sintesis pelumas dasar bio yang difokuskan dalam literature review ini meliputi reaksi esterifikasi/transesterifikasi, pembentukan estolida, dan epoksidasi dan pembukaan cincin. Data yang digunakan merupakan data sekunder yang diperoleh dari penelitian-penelitian sebelumnya berupa data bahan baku, metode sintesis, katalis dan reaktan yang digunakan, serta suhu, tekanan, dan waktu operasi. Pada penelitian ini, 20 variasi data diolah menggunakan Analytic Hierarchy Process (AHP) dengan menentukan parameter-parameter dan urutan prioritas dari parameter tersebut sebagai pertimbangan dalam menentukan reaksi yang paling baik untuk digunakan dalam proses sintesis pelumas dasar bio, sehingga dapat dijadikan sebagai acuan dalam penelitian di laboratorium. Berdasarkan pengolahan data dengan AHP, diperoleh urutan prioritas parameter pada sintesis pelumas dasar bio adalah karakteristik produk, yield, penggunaan jenis katalis dan reaktan, suhu, tekanan, dan waktu operasi dan reaksi yang paling baik digunakan adalah transesterfikasi 1 dengan bahan baku yang digunakan adalah asam oleat dan trimetilolpropana (TMP) dengan katalis natrium metoksida (NaOCH3) pada suhu 150°C, tekanan 0,3 mbar dalam waktu 45 menit dengan perolehan yield sebesar 98%.


Bio-based lubricants are basic lubricants obtained from living materials such as vegetable oil. Bio-based lubricants can meet both functional and environmental criteria, but it cannot be used directly as lubricants because it has poor performance when used at low temperatures and have poor thermal stability and oxidation, so various methods are used to improve performance, properties and characteristics of the vegetable oil (Annisa & Widayat, 2018). One method used is chemical modification. Chemical modification is a modification made in vegetable oil through chemical reactions (Rudnick, 2013). Chemical modification methods in the synthesis of bio-base lubricants that are focused in this literature review include esterification/transesterification, estolide formation, and epoxidation and ring opening reactions. The data used are secondary data obtained from previous studies in the form of raw material data, synthesis methods, catalysts and reactants used, temperature, pressure, and time of operation. In this study, 20 variations of data were processed using Analytic Hierarchy Process (AHP) by determining parameters and priority order as a consideration in determining the best reaction to use in the process of synthesis of bio-base lubricants, so that it can be used as a reference in laboratory research. Based on data processing with AHP, the order of priority parameters obtained in the synthesis of bio base lubricants is product characteristics, yield, use of catalyst and reactant types, temperature, pressure, and operating time and the best reaction used is transesterfication with the raw material used is oleic acid and trimethylolpropane (TMP) with a sodium methoxide (NaOCH3) catalyst at temperature of 150°C, pressure of 0,3 mbar in 45 minutes with yield of 98%.

Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library