Indonesia sebagai salah satu negara tropis terbesar di dunia dengan hutan seluas 125.922.474 hektar memiliki sumber daya hutan yang melimpah termasuk berbagai sumber minyak nabati salah satunya adalah lemak tengkawang. Lemak dari tengkawang ini bernilai cukup tinggi karena kandungan asam lemaknya, nilai ekonominya pun jauh meningkat apabila buah tersebut diolah menjadi lemak daripada hanya dijual dalam bentuk buah kering. Lemak tengkawang dapat berperan sebagai pengganti lemak kokoa karena sifatnya yang serupa. Metode yang digunakan oleh masyarakat setempat untuk mendapatkan mentega tengkawang ini masih tradisional sehingga kualitas produksinya belum dapat memenuhi Standar Nasional Indonesia (SNI). Penelitian yang ada menunjukkan bahwa parameter SNI yang belum dapat dicapai adalah asam lemak bebas dan warna tengkawang. Penelitian ini bertujuan untuk menurunkan kadar beta karoten pada lemak tengkawang dalam rangka mendapatkan warna yang sesuai SNI dan menurunkan bilangan peroksida pada lemak tengkawang dengan penambahan adsorben bentonit teraktivasi termal pada proses pemucatan. Penelitian ini melakukan purifikasi mentega tengkawang dengan melalui tiga langkah yaitu praperlakuan lemak tengkawang, aktivasi bentonit serta analisis RSM. Praperlakuan lemak tengkawang ini terdiri dari degumming dan netralisasi. Proses pemucatan dilakukan dengan bentonit yang diaktivasi secara termal pada variable tertentu. Variabel yang diamati adalah pengaruh suhu aktivasi, waktu aktivasi dan rasio bentonit:lemak tengkawang.. Analisis RSM digunakan untuk melihat signifikasi pengaruhi variable tersebut terhadap kadar beta-karoten dan bilangan peroksida pada lemak tengkawang. Didapatkan bahwa penambahan bentonit teraktivasi termal pada proses pemucatan lemak tengkawang terbukti menurunkan kadar beta karoten dari 114 μg/mL menjadi 13 μg/mL, dan menurunkan bilangan peroksida dari 9.7 mek O2/kg sampek menjadi 4.87 mek O2 kg sampel. Meskipun begitu variasi yang dilakukan pada variabel terikat tidak memiliki efek signifikan terhadap perubahan kandungan beta karoten dan bilangan peroksida
Indonesia is one of the largest tropical countries in the world with 125,922,474 hectares of forest having abundant forest resources including a source of vegetable oil, one of which is tengkawang fat. The fat content of tengkawang is quite high because of its fatty acid content, its economic value is far increased compared to the fruit processed into fat from only being sold in the form of dried fruit. The fat can be consumed as cocoa fat because of its similar nature. The method used by the local community to obtain tengkawang butter is still traditional so that the quality of the product does not meet the Indonesian National Standard (SNI). Existing research shows that SNI parameters that have not been achieved are free fatty acids and tengkawang colors. This study tried to reduce the levels of beta carotene in tengkawang fat in order to obtain the appropriate color of SNI and reduce the peroxide number in tengkawang fat by increasing the adsorbent of thermally activated bentonite in the bleaching process. This study purified tengkawang butter with three steps, namely pretreatment of tengkawang fat, activating bentonite and RSM analysis. This treatment of tengkawang fat consists of degumming and neutralization. The bleaching process is carried out with thermal bentonite with certain variables. The variables are the activation temperature, activation time and bentonite-tengkawang fat ratio. RSM analysis is used to see the significance of influencing this variable on beta-carotene levels and peroxide numbers in tengkawang fat. It was found that replacing thermal bentonite in the tengkawang fat bleaching process was shown to reduce beta carotene levels from 114 μg / mL to 13 μg / mL, and reduce peroxide numbers from 9.7 meq O2 / kg to 4.87 meq of O2 kg sample. Even so the variations carried out in the bound variable do not have a significant effect on changes in the content of beta carotene and peroxide numbers
Pelumas dasar bio adalah pelumas dasar yang diperoleh dari bahan-bahan hayati seperti minyak nabati. Pelumas berbasis minyak nabati dapat memenuhi kriteria baik dari fungsi maupun lingkungan, tetapi tidak dapat digunakan secara langsung sebagai pelumas karena memiliki kinerja yang buruk pada suhu rendah serta memiliki kestabilan termal dan oksidasi yang buruk, sehingga digunakan berbagai metode untuk meningkatkan kinerja, memperbaiki sifat dan karakteristik dari minyak nabati tersebut (Annisa & Widayat, 2018). Salah satu metode yang digunakan adalah modifikasi kimia. Modifikasi kimia merupakan modifikasi yang dilakukan pada minyak nabati melalui reaksi kimia (Rudnick, 2013). Metode modifikasi kimia pada sintesis pelumas dasar bio yang difokuskan dalam literature review ini meliputi reaksi esterifikasi/transesterifikasi, pembentukan estolida, dan epoksidasi dan pembukaan cincin. Data yang digunakan merupakan data sekunder yang diperoleh dari penelitian-penelitian sebelumnya berupa data bahan baku, metode sintesis, katalis dan reaktan yang digunakan, serta suhu, tekanan, dan waktu operasi. Pada penelitian ini, 20 variasi data diolah menggunakan Analytic Hierarchy Process (AHP) dengan menentukan parameter-parameter dan urutan prioritas dari parameter tersebut sebagai pertimbangan dalam menentukan reaksi yang paling baik untuk digunakan dalam proses sintesis pelumas dasar bio, sehingga dapat dijadikan sebagai acuan dalam penelitian di laboratorium. Berdasarkan pengolahan data dengan AHP, diperoleh urutan prioritas parameter pada sintesis pelumas dasar bio adalah karakteristik produk, yield, penggunaan jenis katalis dan reaktan, suhu, tekanan, dan waktu operasi dan reaksi yang paling baik digunakan adalah transesterfikasi 1 dengan bahan baku yang digunakan adalah asam oleat dan trimetilolpropana (TMP) dengan katalis natrium metoksida (NaOCH3) pada suhu 150°C, tekanan 0,3 mbar dalam waktu 45 menit dengan perolehan yield sebesar 98%.
Bio-based lubricants are basic lubricants obtained from living materials such as vegetable oil. Bio-based lubricants can meet both functional and environmental criteria, but it cannot be used directly as lubricants because it has poor performance when used at low temperatures and have poor thermal stability and oxidation, so various methods are used to improve performance, properties and characteristics of the vegetable oil (Annisa & Widayat, 2018). One method used is chemical modification. Chemical modification is a modification made in vegetable oil through chemical reactions (Rudnick, 2013). Chemical modification methods in the synthesis of bio-base lubricants that are focused in this literature review include esterification/transesterification, estolide formation, and epoxidation and ring opening reactions. The data used are secondary data obtained from previous studies in the form of raw material data, synthesis methods, catalysts and reactants used, temperature, pressure, and time of operation. In this study, 20 variations of data were processed using Analytic Hierarchy Process (AHP) by determining parameters and priority order as a consideration in determining the best reaction to use in the process of synthesis of bio-base lubricants, so that it can be used as a reference in laboratory research. Based on data processing with AHP, the order of priority parameters obtained in the synthesis of bio base lubricants is product characteristics, yield, use of catalyst and reactant types, temperature, pressure, and operating time and the best reaction used is transesterfication with the raw material used is oleic acid and trimethylolpropane (TMP) with a sodium methoxide (NaOCH3) catalyst at temperature of 150°C, pressure of 0,3 mbar in 45 minutes with yield of 98%.