Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
M. Rasyid Ramdhani
Abstrak :
Rasio elektrifikasi yang belum sepenuhnya merata di Indonesia disebabkan karena sulitnya akses jaringan listrik untuk masuk ke daerah terpencil dan tertinggal. Sehingga dibutuhkan pembangkit tenaga listrik mandiri yang berasal dari energi baru dan terbarukan untuk memenuhi kebutuhkan listrik di daerah terpencil dan tertinggal. Dari sekian banyak sumber daya energi baru dan terbarukan, Turbin piko hidro dapat dijadikan salah satu alternatif. Hal ini disebabkan turbin pikohidro memiliki biaya pembuatan yang lebih murah, serta instalasi dan perawatan yang lebih mudah dibandingkan sumber lain seperti tenaga surya atau turbin angin. Penelitian ini dilakukan menggunakan perangkat halus Computational Fluid Dynamics (CFD) dimana penelitian ini bertujuan untuk membandingkan variasi rasio diameter dan head ( 1.5, 1.75, 2, 2.25 dan 2.5 D/H) ditambah dengan 1 variasi dari rekomendasi Bach untuk besaran diameter yaitu D = H +3.5m. Selanjutnya pengujian dilakukan menggunakan variasi ketinggian aliran masuk (512.5 mm, 600 mm dan 712.5 mm) pada roda air dengan D/H yang memiliki unjuk kerja terbaik. Pengujian ini dilakukan untuk mengetahui pengaruh perubahan bentuk sudu roda air akibat perbedaan rasio D/H dan mengetahui dampak perubahan kecepatan aliran akibat perubahan ketinggian aliran masuk terhadap unjuk kerja turbin. Pada rasio D/H 2.25 menunjukan unjuk kerja yang lebih stabil pada kondisi kecepatan aliran air berbanding kecepatan tangensial roda air (U/Vt) yang bervariasi. Roda air dengan rasio D/H 2.25 menghasilkan efisiensi tertinggi sebesar 55% pada debit 0.32 m3/s, menghasilkan torsi sebesar 5134.07 Nm dengan putaran sebesar 6.49 RPM. Ketinggian aliran air masuk 512.5 mm pada roda air dengan rasio D/H 2.25 menghasilkan rerata unjuk kerja yang lebih baik dibandingkan dengan ketinggian aliran masuk yang lain. ......The electrification ratio is not evenly distributed in Indonesia due to the difficulty of access to the electricity network to remote and disadvantaged areas. So we need an independent power plant that comes from new and renewable energy to meet the need for electricity in remote and disadvantaged areas. From several new and renewable energy resources, Pico hydro turbines can be used as an alternative, because pico hydro turbines have cheaper manufacturing costs, as well as easier installation and maintenance compared to other sources such as solar power or wind turbines. This research was conducted using Computational Fluid Dynamics (CFD) software, this study aims to compare variations in diameter and head ratio (1.5, 1.75, 2, 2.25 and 2.5 D / H) plus 1 variation from Bach's recommendations for diameter breastshot ie D = H + 3.5m. Furthermore, testing using variations in the height of the inflow (512.5 mm, 712.5 mm and 600 mm) on the water wheel with D/H which has the best performance. This test was conducted to determine the effect of changes in the shape of the water wheel blade due to differences in the D/H ratio and to know the impact of changes in flow velocity due to changes in the inflow height on the performance of the turbine. The D/H ratio of 2.25 shows a more stable performance under conditions of water flow velocity compared to the tangential velocity of the water wheel (U/Vt ) which varies. The water wheel with a D / H ratio of 2.25 produces the highest efficiency of 55% at a discharge of 0.32 m3/s, producing a torque of 5134.07 Nm with a rotation of 6.49 RPM. The height of the inlet water flow 512.5 mm on the water wheel with a D/H ratio of 2.25 produces a better average performance compared to the other height of the inlet flow.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dimas Adi Yuniarto Atmanugraha
Abstrak :
Emisi karbon telah menjadi isu global yang menjadi perhatian salah satunya dari segi penyediaan energi listrik. Pemanfaatan energi yang sebelumnya berasal dari bahan bakar fosil kini perlahan bergeser menjadi pemanfaatan energi baru dan terbarukan. Dengan ketersediaan lahan dan potensi energi anginnya, wilayah Sulawesi Selatan memiliki potensi dalam pembangunan pembangkit listrik berbasis energi angin. Penelitian ini ditujukan untuk mengetahui potensi pembangunan turbin angin yang yang dikaji melalui potensi luas area dari wilayah yang dipilih, potensi pembangkitan energi berdasarkan tipe turbin, potensi pembangkitan energi berdasarkan pemanfaatan lahan, dan kelayakan secara ekonomi. Tiga jenis turbin yang digunakan dalam penelitian ini adalah turbin Eno Energy Eno-126 3.5, Enercon E-141 EP4, dan Envision EN-182-5.0. Berdasarkan penelitian ini, potensi pembangunan turbin angin yang layak secara ekonomi pada lahan seluas 2.581,28 Hektar yang berlokasi di Kabupaten Jeneponto, Provinsi Sulawesi Selatan, adalah pembangunan turbin Envision EN-182-5.0 dengan kapasitas total 125 MW. Pembangunan tersebut mencangkup pembangunan 25 turbin angin dengan total biaya pembangunan sebesar 3,9 Triliun Rupiah. Turbin-turbin ini mampu membangkitkan energi listrik pada setahun pertama sebesar total 299,54 GWh dengan nilai Capacity Utilization Factor keseluruhan pada 27,36%. Secara keekonomian, pembangunan turbin ini memiliki nilai Levelized Cost of Electricity sebesar 1.164 IDR/kWh. ......Carbon emissions have become a global issue, particularly in providing electricity. The utilization of energy, which previously based on fossil fuels, is gradually shifting towards renewable energy sources. With available land and it’s wind energy potential, the South Sulawesi region has the potential for developing wind energy-based power plants. This research aims to determine the potential for the development of wind turbines, assessed through the potency of available area on the selected region, energy generation potential based on turbine types, energy generation potential based on land utilization, and economic feasibility. Three turbine types used in this study are the Eno Energy Eno-126 3.5, Enercon E-141 EP4, and Envision EN-182-5.0 turbines. Based on this research, the economically viable potential for wind turbine development on a 2,581.28 Ha land located in Jeneponto Regency, South Sulawesi Province, is the construction of Envision EN-182-5.0 turbines with a total capacity of 125 MW. The development includes the construction of 25 wind turbines with a total construction cost of 3.9 trillion Indonesian Rupiah. These turbines can generate electrical energy for the first year totaling 299.54 GWh with an overall Capacity Utilization Factor of 27.36%. Economically, the construction of these turbines has a Levelized Cost of Electricity at 1,164 IDR/kWh.
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Abdur Rouf
Abstrak :
Turbin Angin Sumbu Vertikal (TASV) merupakan jenis turbin angin yang dengan kecepatan angin rendah dapat menghasilkan listrik dan cukup mudah diterapkan pada beban kelistrikan yang terisolasi. Penelitian ini bertujuan untuk mendapatkan desain sistem TASV dan sistem pasokan listrik yang paling optimal baik secara teknis maupun ekonomis untuk memenuhi kebutuhan energi listrik di daerah Tertinggal, Terdepan dan Terluar (3T). Dengan pendekatan statistik Ordinary Kriging, nilai kecepatan rara-rata tahunan di Raja Ampat diestimasikan berdasarkan data historis kecepatan angin yang berasal dari Badan Meteorologi, Klimatologi dan Geofisika 2019 (BMKG) dan data National Oceanic and Atmospheric Administration 2019 (NOAA) sehingga distribusi kecepatan angin dapat diproyeksikan dengan menggunakan pendekatan distribusi Weibull dan Rayleigh. Parameter yang divariasikan meliputi spesifikasi turbin, kapasitas daya dan kecepatan angin. Hasil penelitian menunjukkan bahwa desain TASV yang optimal untuk diimplementasikan di Raja Ampat adalah turbin 10 kW tipe darrieus dengan blade lurus, cut-in speed 1.5 m/s, kecepatan rated 9 m/s dan faktor kapasitas 20.9%. Untuk kebutuhan energi listrik rata-rata 1,074/pelanggan/tahun, Produksi Energi Tahunan sebesar 18,337 kWh/unit/turbin, 1-unit TASV dapat mensuplai energi listrik kepada 12 pelanggan atau 1-unit turbin dalam radius 1 km2 dengan kepadatan penduduk rata-rata 48 Jiwa/km2. Untuk memasok jumlah permintaan di Raja Ampat sebesar 459,797 kWh ditahun 2021, dibutuhkan sebanyak 25-unit TASV dengan LCOE 20.2 Sen USD / kWh / unit atau lebih rendah dari Biaya Produksi yang Diatur (21.34 sen USD / kWh). Hasil ini menunjukkan TASV merupakan alternatif yang tepat secara teknis dan ekonomis untuk beban kelistrikan di negara-negara kepulauan dengan banyak daerah terisolasi seperti Indonesia. ......Vertical Axis Wind Turbine (VAWT) can generate electricity just by low wind speed and simply able to apply for isolated demands. This study aims to obtain the most optimal VAWT system design and power supply system both techno-economic to meet the demands in disadvantaged, frontier and outermost (3T) areas. By Ordinary Kriging method, the annual average velocity in Raja Ampat was estimated based on historical wind speed data from the 2019 Meteorology, Climatology and Geophysics Agency (BMKG) and the 2019 National Oceanic and Atmospheric Administration (NOAA) so that the wind speed distribution can be projected using the Weibull and Rayleigh distribution. The varied parameters include turbine specifications, power capacity and wind speed. The results showed that the optimal VAWT design was the 10 kW straight blade Darrieus turbine, with a cut-in speed of 1.5 m/s, an rated speed of 9 m/s and a capacity factor of 20.9%. For demands an average of 1,074/customer/year, Annual Energy Production of 18,337 kWh turbine unit, then 1 unit can supply the demand for 12 customers or 1 units within a radius of 1 km2, with an average population density of 48 people/ km2. To supply the total demand in Raja Ampat of 459,797 kWh in 2021, 25-unit VAWT with a LCOE of 20.2 Cents USD/kWh or lower than the Regulated Production Cost (21.34 cents USD / kWh) were required. These results suggest that VAWT is a techno-economic viable alternative for electricity demand in archipelagic countries with many isolated areas such as Indonesia.
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1991
S35379
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S36308
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoyok Marsudi
Abstrak :
Turbin gas merupakan mesin kalor pembangkit daya yang mengubah energi kalor menjadi energi mekanis dengan fluida kena berupa gas. Dengan kelebihan-kelebihan yang dimitiki seperli kemampuan merespon beban puncak dengan cepat maka digunakan sebagai penggerak generator pada pembangkit lisirik. Aplikasi yang lain adalah digunakan sebagai penghasil gaya dorong pada pesawat terbang. Konstruksi yang sederhana terdiri dari kompresor, ruang bakar dan turbin. Performance dan sebuah turbin gas sangat tergantung dari unjuk kerja keiiga komponen tersebut. Dalam ruang bakar, bahan bakar dibakar oleh udara yang bertekanan dan bersuhu tinggi. Proses pembakaran yang kurang sempuma menunjukkan kurang efisiennya ruang bakar sehingga dapat memperendah etisiensi turbin gas. Sebagai indikator dapat dilihat dari kandungan emisi gas buang. Pembakaran yang menghasilkan komponen seperti CO,HC,NOxi, O2 yang bukan merupakan produk pembakaran hidrokarbon secara sempurna (H2O, CO2 dan N2) menunjukkan bahwa pembakaran terjadi kurang sempurna. Emisi gas buang turbin gas sangat dipengaruhi oleh harga campuran udara dengan bahan bakar, temperatur pembakaran, daya operasi, bentuk dan besar ruang bakar, dan waktu pembakaran. Berdasarkan teori ini, dapat diketahui hubungan kecenderungan emisi gas buang dengan performance turbin gas. Sehingga perkembangan dalam usaha meningkatkan performance turbin gas dapat dilakukan dengan mempertimbangkan minimalisasi kandungan emisi gas buang yang dapat mencemarkan lingkungan. ......Gas turbine is a power generator heat engine that converted heat energy to be mechanical energy which using gas as working fluid. its advantages such as ability to respond ultimate load quickly, it's used as power for generator at power plant. Another application is used to generate force at aircraft. A sinply construction consists of compresor, combustion chamber, and turbine. ln combustion chamber, fuel is bumed by air with high pressure and temperature. Unideal combustion shows that combustion chamber has not enough hlgh efficiency, so tt drop the thermal efiiciency of gas turbln. As indicator, it could showed by emission of exhaust gas. Combustion that produce CO, HC, NOx and O2, where they're not an ideal hydrocarbon combustion (H2O, CO2 and Nz) shows that combustion is not ideal. Exhaust gas emission of gas turbine is depend on air and fuel mixture, combustion temperature, operation power, combustion chamber constniction and combustion time. According this theory, it could known tendentious relationship between exhaust gas emission and gas turbine performance. So, development in order to increase gas turbine perfonnance could do with considering minimalize exhaust gas emission that could make environment pollution.
Depok: Fakultas Teknik Universitas Indonesia, 2001
S37099
UI - Skripsi Membership  Universitas Indonesia Library
cover
Janindri Wiranti
Abstrak :
Semakin meningkatnya kebutuhan akan pasokan listrik serta semakin terbatasnya minyak bumi sebagai bahan baku pembangkit listrik menjadi salah satu alasan mengapa Sumber Daya Energi terbarukan (Renewable Energy) perlu dimanfaatkan semaksimal mungkin. Salah satu Sumber Daya Energi Terbarukan yang dapat dimanfaatkan sebagai Pembangkit Listrik adalah Angin. Studi dan Analisis potensi Angin diawali dengan pengumpulan dan pengolahan data kecepatan angin yang berasal dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) sehingga didapatkan Nilai Statistik Potensi Angin. Analisis lebih lanjut dilakukan untuk menentukan Turbin Angin yang digunakan berdasarkan nilai Capacity Factor (CF). Parameter yang mempengaruhi nilai Capacity Factor antara lain power yang dihasilkan turbin sesuai spesifikasi turbin selama satu tahun serta power yang dihasilkan oleh kecepatan angin pada ketinggian turbin tertentu. Dari Analisis yang dilakukan pada Bandara Depati Amir, Pangkal Pinang dengan kecepatan angin rata-rata tahun 2011 sebesar 3.3 m/s pada ketinggian 33 meter maka Turbin yang tepat untuk digunakan di lokasi tersebut adalah turbin 2g dan 3f dengan kapasitas masing-masing 600kW dan 750 kW. ......Increasing demand for electricity and limited supply of petroleum as a raw material power are some reasons why the renewable energy resources is very advantageous. One of which can be used as power plant is wind (power). The study and analysis of wind potential begins with collection and processing of wind speed data derived from the Meteorology, Climatology, and Geophysics Agencies (BMKG), thus obtained wind potential statistic value. Further analysis was done to determine the wind turbines used on capacity factor (CF) value basis. Parameters that affect the capacity factor value are the energy resulted by turbines suitable to its specification within a year and produced by the wind speed at certain height of turbine. The analysis has been carried out at Depati Amir Airport, Pinang Kuala, in 2011. With an average wind speed by 3.3 m/s at a height of 33 meters, the appropriate turbines to be used in the location are 2g and 3f turbines, each with a capacity of 600 kW and 750 kW.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44939
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhara Edy Prabowo
Abstrak :
Skripsi ini akan membahas tentang pengujian dan perancangan sebuah turbin angin berporos vertikal ( vertical axis wind turbine ). Metode penelitian yang digunakan adalah metode deskriptif dengan menyajikan hasil penelitian berupa grafik dan dianalisis secara deskriptif pula. Pengamatan yang dilakukan adalah dengan melihat arus keluaran dari alternator ( I ), tegangan (v) dan jumlah putaran ( n ) yang dihasilkan. Turbin diputar dengan menggunakan fan sebagai pengganti angin yang diatur pada kecepatan tertinggi. Hasil penelitian menunjukkan bahwa turbin ini dapat mengisi accumulator, hal ini dapat dilihat dari arus keluaran yang terbaca pada amperemeter, walaupun arus keluaran cukup variatif dan tidak terlalu besar. ......This thesis describes about the design, fabrication and trial of a vertical axis wind turbine for charging an accumulator. The methods which are in use is a descriptive methods and resulting a several chart to analyze with the same method. The trial was done by gaining 3 datas, which are the current value ( I ), the voltage (v) and the rotation ( n ) The trial conclude that this mechanical air turbine is able to charge the accumulator since the amperemeter shows that there is a current counted out from the alternator.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S52155
UI - Skripsi Open  Universitas Indonesia Library
cover
Lukmanul Hakim
Abstrak :
Kebutuhan energi umumnya di dunia dan khususnya di Indonesia semakin hari semakin meningkat, sedangkan pemasok utama energi tersebut berasal dari energi fosil. Energi fosil adalah energi yang tidak dapat diperbaharui, sehingga akan mengakibatkan kehabisan dikemudian hari. Untuk itu perlu ada upaya untuk mengatasi masalah tersebut, diantaranya dengan memanfaatkan energi alternatif. Energi alternatif dengan potensi yang sangat besar salah satunya adalah energi angin (dengan potensi sebesar 9 GW). Pemanfaatan energi angin tersebut dengan menggunakan teknologi turbin angin. Untuk di Indonesia, teknologi turbin angin menemui kendala berupa kecepatan angin yang rendah, khususnya di wilayah pemukiman. Solusi masalah tersebut adalah dengan penambahan suatu selubung (shroud) diantara rotor turbin angin. Motede yang dipakai pada penelitian ini adalah berupa numerikal dan ekperimental. Dengan berbagai variasi geometri (dengan dan tanpa penambahan flanged) , selubung disimulasikan sehingga didapat model selubung yang mampu meningkatkan kecepatan tertinggi. Setelah itu, dengan perbandingan bilangan Reynolds dibuat sebuah model uji yang diuji pada sebuah wind tunnel. Hasil dari penelitian ini adalah peningkatan kecepatan pada model selubung flanged lebih besar dibanding tanpa flanged. ......The world's demand of energy, especially in the case of Indonesia, is increasing significantly. The high energy usage can create scarcity in the future as most of the energy used is based on non-renewable resources. Therefore it requires solutions to solve this problem; one of it is benefiting the presence of alternative energy. One of the most potential forms of alternative energy is the wind energy (with potential of 9 GW).The wind turbine technology can be used to harvest wind energy. But the wind has low velocity in Indonesia, especially in the suburban areas, and it becomes an obstacle for the wind turbine technology to be applied. The solution is the addition of shroud between the wind turbine rotors. Methods used in this research are numerical and experimental. With two varied models (with and without adding flanged), the shrouds are simulated in order to reach the highest speed. Using the Reynolds number comparison, a test model is constructed and tested to a wind tunnel. The result is the shroud with flanged gives more speed than the non-flanged model.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42177
UI - Skripsi Open  Universitas Indonesia Library
cover
Ridwan Arief Subekti
Abstrak :
Pembangkit listrik tenaga air skala kecil dengan memanfaatkan aliran sungai datar atau head sangat rendah saat ini sedang tren dikembangkan. Salah satu jenis turbin yang dapat diaplikasikan untuk tipe head sangat rendah adalah turbin pusaran air gravitasi. Hasil kajian menunjukkan bahwa rata-rata turbin pusaran air gravitasi yang telah dibuat memiliki efisiensi jauh di bawah efisiensi turbin jenis lainnya. Penelitian ini bertujuan untuk meningkatkan efisiensi turbin pusaran air gravitasi dengan melakukan optimasi pada desain sudu turbin. Turbin dirancang skala laboratorium yang beroperasi pada head netto 9 cm, 400 rpm, dengan debit air 3 l/s. Optimasi numerik profil sudu turbin dilakukan menggunakan surface vorticity algorithm untuk meminimalkan losses pada hydrofoil, yang dicoding pada MATLAB untuk memperoleh sudut stagger yang optimal. Selanjutnya dilakukan validasi desain menggunakan analisis CFD ANSYS CFX untuk mengetahui performa turbin air. Dari analisis ini efisiensi turbin air meningkat sekitar 2,6%, ini menunjukan bahwa surface vorticity algorithm dapat diterapkan. Pengujian prototipe turbin pusaran air gravitasi yang dilanjutkan di laboratorium pada 2 buah model sudu yaitu model sudu desain awal sebelum dioptimasi dan desain hasil optimasi setelah dianalisis menggunakan surface vorticity algorithm. Dari hasil pengujian didapat bahwa sudu hasil optimasi memiliki efisiensi 45,3%, atau sekitar 14% lebih besar dari sudu desain awal yang efisiensinya 39,7%. Kedua jenis sudu memiliki efisiensi terbaik dengan posisi pemasangan terendam pada lubang outlet basin. ......Small-scale hydroelectric power plants utilizing flat river flows or very low heads are currently being developed. One type of turbine that can be applied to the very low head type is the gravitational water vortex turbine. The results of the study show that the gravitational water vortex turbine that has been made has an efficiency far below other types of turbines. This study aims to increase the efficiency of the gravitational water vortex turbine by optimizing the blade turbine design. The turbine is designed on a laboratory scale which operates at a net head of 9 cm, 400 rpm, with a water flow of 3 l/s. Numerical optimization of the turbine blade profile was carried out using a surface vorticity algorithm to obtain losses on the hydrofoil, which was coded in MATLAB to obtain the optimal stagger angle. Furthermore, design validation was carried out using ANSYS CFX CFD analysis to determine the performance of the air turbine. From this analysis the efficiency of the air turbine increased by about 2.6%, this indicates that the surface vorticity algorithm can be applied. The testing of the gravitational water vortex turbine prototype was continued in the laboratory on 2 blade models, namely the initial design blade model before being optimized and the optimization design after being analyzed using the surface vorticity algorithm. From the test results, it is found that the optimized blade has an efficiency of 45.3%, or about 14% greater than the initial design blade which has an efficiency of 39.7%. Both types of blades have the best efficiency with the installation position submerged in the basin outlet hole.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>