Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Elke Annisa Octaria
"

Triclustering merupakan teknik analisis pada data 3D yang bertujuan untuk mengelompokkan data secara bersamaan pada baris dan kolom di sepanjang waktu/kondisi yang berbeda. Hasil dari teknik ini disebut dengan tricluster. Tricluster merupakan subruang berupa subset dari baris, kolom, dan waktu/kondisi. Triclustering biasanya digunakan untuk menganalisis data ekspresi gen. Studi dan analisis data ekspresi gen selama perkembangan suatu penyakit merupakan masalah penelitian yang penting dalam bioinformatika dan aspek klinis. Oleh karena itu, penelitian ini mengimplementasikan metode THD-Tricluster dengan new residue score pada data ekspresi gen perkembangan penyakit HIV-1 yang terdiri dari 22283 probe id, 40 observasi, dan 4 kondisi. Pada tahap pertama dilakukan pencarian bicluster dengan lift algorithm berdasarkan nilai new residue score dengan threshold . Pada tahap kedua dilakukan pencarian tricluster dengan menentukan minimum probe dan minimum observasi  sehingga memperoleh 33 tricluster. Hasil evaluasi tricluster menggunakan Inter-temporal Homogeneity dengan threshold  diperoleh 32 tricluster yang menunjukkan 3 gen yang terkait dengan HIV-1 yaitu HLA-C, ELF-1, dan JUN.


Triclustering is an analysis technique on 3D data that aims to group data simultaneously on rows and columns across different times/conditions. The result of this technique is called a tricluster. Triclusters are a subspace consisting of a subset of rows, columns, and time/conditions. Triclustering is commonly used to analyze gene expression data. The study and analysis of gene expression data during disease progression is an important issue in the research of bioinformatics and clinical aspects. Therefore, this study implements the THD-Tricluster method with a new residue score on the gene expression data for HIV-1 disease progression consisting of 22283 probe id, 40 observations, and 4 conditions. In the first stage, a bicluster search was carried out with a lift algorithm based on the new residue score with a threshold of I = 0.08. In the second stage, the tricluster search was carried out by determining the minimum probe = 5 and the minimum observation = 2 to obtain 33 triclusters. The results of the tricluster evaluations using Inter-temporal Homogeneity with a threshold of Ï? = 0.8 obtained 32 triclusters which shows 3 genes related to HIV-1, namely HLA-C, ELF-1, and JUN.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dea Siska
"Metode triclustering merupakan pengembangan dari metode clustering dan biclustering. Berbeda dengan  metode clustering dan biclustering yang bekerja pada data dua dimensi, triclustering bekerja pada data tiga dimensi yang disusun dalam bentuk matriks. Matriks ini terdiri dari dimensi observasi, atribut, dan konteks. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara simultan dan membentuk kelompok berupa subruang yang disebut tricluster. Metode ini umumnya diimplementasikan dalam bidang bioinformatika, terkhususnya dalam analisis data ekspresi gen tiga dimensi untuk menemukan profil ekspresi gen. Data atau matriks ini terdiri dari dimensi gen, kondisi eksperimen, dan waktu eksperimen (time point).
Salah satu algoritma triclustering, yaitu Order Preserving Triclustering (OPTricluster), adalah algoritma yang menggunakan pendekatan pattern based dan digunakan untuk menganalisis data ekspresi gen tiga dimensi yang merupakan short time series 3-8 time point). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan ekspresi yang sama di sepanjang time points pada sejumlah kondisi eksperimen.
Dalam penelitian ini, OPTricluster diimplementasikan pada data ekspresi gen sejumlah pasien yellow fever pasca vaksinasi dengan beberapa skenario yang menggunakan threshold yang berbeda-beda. Skenario dengan threshold yang optimum ditunjukkan oleh rata-rata skor Tricluster Diffusion terendah. Tricluster-tricluster yang dihasilkan berhasil menunjukkan hubungan biologis di antara pasien-pasien tersebut, di mana vaksin cenderung memberikan reaksi yang lebih signifikan pada pasien pria dibandingkan pasien wanita. Selain itu, ditemukan anomali pada pasien-pasien tersebut.

Triclustering method is the development of clustering method and biclustering method. Unlike clustering and biclustering that works on two-dimensional data, triclustering works on three-dimensional data that arranged in the form of a matrix consisting of observations, attributes, and contexts dimensions. Triclustering is able to group these dimensions simultaneously and form a subspace called a tricluster. This method is generally implemented in analysis of three-dimensional gene expression data to find profiles of gene expression. This data or matrix consists of genes, experimental conditions and time points dimensions.
One of the triclustering algorithms, Order Preserving Triclustering (OPTricluster), is an algorithm that uses a pattern-based approach and used to analyze short time series data (3-8 time points). The OPTricluster forms the tricluster by identifying genes that have the same expression change across time points under a number of experimental conditions. The change in expression is expressed in a rank pattern which is divided based on three types of patterns, namely constant, conserved and divergent patterns.
In this study, OPTricluster was implemented in gene expression data of yellow fever patients after vaccination using several scenarios with different thresholds. The scenario with the optimum threshold is indicated by the lowest average Tricluster Diffusion score. The resulting triclusters were successful in showing biological relationships among these patients, where the vaccine tending to have a more significant reaction in male patients than in female patients. In addition, anomalies were found in these patients.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awlia Dwi Rachma
"

Metode THD-Tricluster merupakan analisis triclustering dengan pendekatan berbasis biclustering. Pada metode THD-Tricluster digunakan nilai Shifting-and-Scaling Similarity untuk membentuk bicluster terlebih dahulu dan dilanjutkan dengan membentuk tricluster. Nilai SSSim menggunakan Shifting-and-Scaling Correlation untuk mendeteksi adanya  korelasi antaranggota dengan pola pergeseran dan penskalaan serta koherensi antarwaktu dan membandingkannya dengan nilai threshold. Metode THD-Tricluster dilakukan pada data respon pengobatan terapi interferon-beta pada pasien sklerosis ganda. Skenario optimal adalah skenario dengan nilai coverage terkecil yaitu saat menggunakan nilai threshold tertinggi. Pada skenario tersebut diperoleh dua jenis tricluster yaitu tricluster yang memiliki kumpulan gen pada pasien yang responsif dan pasien yang tidak responsif terhadap terapi. Perbedaan kumpulan gen pada kedua tricluster dapat digunakan oleh para ahli medis untuk mengembangkan pengobatan terapi  untuk meningkatkan tingkat keresponsifan pasien sklerosis ganda terhadap terapi tersebut.


The THD-Tricluster method is a triclustering analysis with a biclustering-based approach. The THD-Tricluster method uses the Shifting-and-Scaling Similarity value to form a bicluster first and shows it by forming a tricluster. The SSSim value uses Shifting-and-Scaling Correlation to use an interface with shifting and scaling patterns as well as intertemporal coherence and compares it with the threshold value. The THD-Tricluster method was performed on treatment response data to interferon-beta therapy in multiple sclerosis patients. The optimal scenario is a scenario with a coverage value scenario that uses the highest threshold value. In this scenario, there are two types of tricluster, namely the tricluster which has a collection of genes in responsive patients and patients who are not responsive to therapy. Differences in gene pools in the two tricluster can be used by medical professionals to develop IFN-β therapeutic treatments to increase the responsiveness of multiple sclerosis patients to these therapies.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ika Marta Sari
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan analisis biclustering. Tujuan dari analisis triclustering yaitu mengelompokkan data tiga dimensi secara simultan atau bersamaan. Data tiga dimensi tersebut dapat berupa observasi, atribut, dan konteks. Salah satu pendekatan yang digunakan dalam analisis triclustering, yaitu pendekatan berdasarkan pattern contohnya, adalah metode Timesvector. Metode Timesvector bertujuan untuk mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Metode Timesvector memiliki langkah kerja yang dimulai dengan mereduksi matriks data tiga dimensi menjadi matriks data dua dimensi untuk mengurangi kompleksitas dalam pengelompokkan. Pada metode ini akan digunakan algoritma Spherical K-means dalam pengelompokkannya. Tahap selanjutnya, yaitu mengidentifikasi pola dari cluster yang dihasilkan pada Spherical K-means. Pola yang dimaksud terdiri dari tiga jenis, yaitu DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), dan SEP (Similarly Expressed Pattern). Penerapan dari metode Timesvector dilakukan pada data ekspresi gen yaitu data tumor otak yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan banyak cluster yang sama tetapi nilai threshold yang berbeda-beda. Hasil dari ke enam skenario akan divalidasi menggunakan nilai coverage dan nilai tricluster diffusion (TD). Hasil penerapan metode timesvector menunjukkan bahwa dengan menggunakan threshold sebesar 1,5 memberikan hasil yang paling optimal karena memiliki nilai coverage yang tinggi sebesar 57% dan nilai TD yang rendah sebesar 2,95594E-06. Nilai coverage yang tinggi menunjukkan kemampuan metode dalam mengekstrak data dan nilai TD yang rendah menunjukkan bahwa tricluster yang dihasilkan memiliki volume yang besar dan koherensi yang tinggi. Berdasarkan pola yang dihasilkan menggunakan skenario yang optimal diperoleh sebanyak 49 ODEP cluster dengan pasien ke-empat selalu memiliki pola ekspresi yang berbeda dibandingkan dengan pasien lainya.  Hal ini dapat digunakan oleh ahli medis untuk melakukan tindakan selanjutnya terhadap pasien tumor otak.

 


Triclustering analysis is the development of clustering analysis and biclustering analysis. The purpose of triclustering analysis is to group three-dimensional data simultaneously or simultaneously. The three-dimensional data can be in the form of observations, attributes, and context. One of the approaches used in triclustering analysis, namely an approach based on a pattern, for example, is the Timesvector method. Timesvector method aims to group data matrices that show the same or different patterns in three-dimensional data. The Timesvector method has a work step that starts with reducing the three-dimensional data matrix to a two-dimensional data matrix to reduce complexity in a grouping. In this method, the Spherical K-means algorithm will be used in grouping it. The next step is to identify the pattern of the clusters generated in the Spherical K-means. The pattern referred to consists of three types, namely DEP (Differentially Expressed Pattern), ODEP (One Differentially Expressed Pattern), and SEP (Similar Expressed Pattern). The application of the Timesvector method was carried out on gene expression data, namely brain tumor data carried out in 6 scenarios. Each scenario uses the same many clusters but different threshold values. The results of the six scenarios will be validated using the coverage value and the tricluster diffusion (TD) value. The results of applying the timesvector method show that using a threshold of 1.5 gives the most optimal results because it has a high coverage value of 57% and a low TD value of 2.95594E-06. A high coverage value indicates the method's ability to extract data and a low TD value indicates that the resulting tricluster has a large volume and high coherence. Based on the pattern generated using the optimal scenario, there were 49 ODEP clusters with the fourth patient always having a different expression pattern compared to other patients. This can be used by medical experts to perform further action on brain tumor patients.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library