Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Farhan Muzanni
Abstrak :
Green diesel adalah bahan bakar diesel alternatif yang dibuat dari hydrotreating trigliserida yang memiliki alkana rantai lurus C15-C18. Penelitian ini difokuskan pada studi kinetika reaktor trickle-bed untuk memproduksi green diesel melalui reaksi hydrotreating trigliserida, yang diwakili oleh triolein, dengan katalis NiMo/Al2O3. Model yang dibuat adalah model reaktor trickle-bed 2D axisymmetric dengan mempertimbangkan perpindahan massa di fasa gas, cair, dan padatan katalis. Model disimulasikan dengan COMSOL Multiphysics 5.4 dengan menyesuaikan hasil simulasi dengan data eksperimen. Reaktor yang dimodelkan berisi katalis berbentuk bola dengan ukuran 1 mm. Reaktor akan memiliki ukuran diameter 2,01 cm dan panjang 24 cm. Kondisi operasi reaktor akan memiliki suhu umpan 290-330 oC, tekanan 10 dan 15 bar. Nilai faktor pra-eksponensial untuk reaksi hydrotreating trigliserida, reaksi maju isomerisasi C18 (k10), reaksi mundur isomerisasi C18 (k11), reaksi cracking C17 (k12), dan reaksi cracking C18 (k13) berturut-turut adalah 2,9 x 10-37 1/detik, 3,45 x 1028 1/detik, 6,67 x 10-3 1/detik, dan 1,24 x 10-52 1/detik. Energi aktivasi yang didapatkan untuk k10, k11, k12, dan k13 berturut-turut adalah –340,3 kJ/mol, 340,3 kJ/mol, 17,1 kJ/mol, dan –515,3 kJ/mol. Hasil simulasi dan hasil laboratorium mendekati garis linier pada grafik paritas, menunjukkan bahwa hasil simulasi sudah sesuai dengan hasil laboratorium. ......Green diesel is an alternative diesel fuel made from hydrotreating triglycerides having straight chain alkanes C15-C18. This research is focused on the study of trickle-bed reactor kinetics to produce green diesel by hydrotreating triglycerides, represented by triolein, with NiMo/Al2O3 as catalyst. The model made is a 2D axisymmetric trickle-bed reactor model by considering mass transfer in the gas, liquid, and solid catalyst phases. The model was simulated with COMSOL Multiphysics 5.4 by adjusting the simulation results with experimental data. The modeled reactor contains a spherical catalyst with a size of 1 mm. The reactor will have a diameter of 2.01 cm and a length of 24 cm. The reactor operating conditions will have a feed temperature of 290-330 oC, pressures of 10 and 15 bar. The pre-exponential factor values for triglyceride hydrotreating reaction, forward C18 isomerization reaction (k10), C18 reverse isomerization reaction (k11), C17 cracking reaction (k12), and C18 cracking reaction (k13) were 2.9 x 10-37 1/sec, 3.45 x 1028 1/sec, 6.67 x 10-3 1/sec, and 1.24 x 10-52 1/sec , respectively. The activation energies obtained for k10, k11, k12, and k13 are –340.3 kJ/mol, 340.3 kJ/mol, 17.1 kJ/mol, and –515.3 kJ/mol, respectively. The simulation results and laboratory results are close to the linear line on the parity graph, indicating that the simulation results are in accordance with the laboratory results.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didier Nsabimana
Abstrak :
ABSTRAK
Biodiesel atau Fatty Acid Methyl Ester (FAME) mendapatkan terlalu banyak perhatian karena penurunan cadangan minyak di seluruh dunia dan masalah perubahan iklim. Meskipun biodiesel memiliki banyak manfaat dibandingkan minyak diesel, biodiesel masih memiliki masalah stabilitas oksidasi dan sifat aliran dingin yang membatasi penerapannya. Jadi, untuk mengurangi masalah ini, kita perlu memutakhirkan FAME kita dengan menghidrogenasi sebagiannya. Dalam penelitian ini biodiesel dengan komposisi 95,3% metil linoleat (C18:2) dan 4,7% metil oleat (C18:1) dicampur dengan pelarut n-heptana dengan perbandingan 20% sampai 80% dan dihidrogenasi sebagian dalam reaktor trickle bed menggunakan Ni/Al2O3 sebagai katalis. Penelitian ini dilakukan dengan menggunakan reaktor trickle bed yang ada, sebelum memulai eksperimen reaktor trickle bed dimodifikasi; kami memasang tungku kedua di unggun katalis, ukuran katalis adalah 0,7-0,6 mm, serpihan stainless-steel digunakan untuk pasir silika di bagian pemanas untuk meningkatkan laju perpindahan panas. Reaktor trickle bed yang digunakan memiliki diameter 2,05 cm dan tinggi total 37 cm, unggun katalis memiliki tinggi 24 cm sedangkan bagian pemanas memiliki tinggi 11 cm. Itu dioperasikan pada tekanan 7 bar dan suhu 135 oC, 160 °C dan 185 °C. Pada suhu 135 oC ada 99,21% konversi metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 160 °C ada konversi 98,42% dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 185 °C ada konversi lengkap (100%) dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada 135 oC percobaan menghasilkan H-FAME dengan jumlah C18: 0 yang lebih tinggi yaitu 57,65% dari C18:0 dan 39,4% dari C18:1, pada 160 °C percobaan menghasilkan H-FAME dengan komposisi yang hampir sama yaitu C18:0 dan C18:1 yaitu 49,1% dari C18:0 dan 46,85% dari C18:1 sedangkan pada 185 °C percobaan menghasilkan H-FAME dengan komposisi yang lebih tinggi dari C18:1 yaitu 42,15% dari C18:0 dan 53,9% dari C18:1.
ABSTRACT
Biodiesel or Fatty Acid Methyl Ester (FAME) is gaining too much attention due to the decline of oil deposits worldwide and the climate change concerns. Although biodiesel has many benefits over petroleum diesel it still has the problem of oxidation stability and cold flow properties which limit its application. So, in order to mitigate these problems, we need to upgrade our FAME by partially hydrogenating it. In this research the biodiesel with the composition of 95.3 % methyl linoleate (C18:2) and 4.7 % methyl oleate (C18:1) was mixed with n-heptane as solvent to the ratio of 20% to 80% and partially hydrogenated in the trickle bed reactor using Ni/Al2O3 as a catalyst. This research was conducted using the existing trickle bed reactor so, before starting the experiments the trickle bed reactor was modified; we installed a second furnace at catalyst bed, the size of catalyst was 0.7-0.6 mm, stainless-steel flakes were used instead of silica sand in the heating section in order to increase the heat transfer rate. The trickle bed reactor used had the diameter of 2.05 cm and a total height of 37 cm, the catalyst bed had a height of 24 cm while the heating section had a height of 11 cm. It was operated at a pressure of 7 bar and temperatures of 135 °C, 160 °C and 185 °C. At a temperature of 135 °C there was 99.21% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 160 °C there was 98.42% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 185 oC there was complete conversion (100%) of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At 135 °C the experiment yielded H-FAME with higher amount of C18:0 i.e 57.65% of C18:0 and 39.4% of C18:1, at 160 °C the experiment yielded H-FAME with almost equal composition of C18:0 and C18:1 i.e 49.1% of C18:0 and 46.85% of C18:1 while at 185 °C the experiment yielded the H-FAME with higher composition of C18:1 i.e 42.15% of C18:0 and 53.9% of C18:1.
2019
T55071
UI - Tesis Membership  Universitas Indonesia Library
cover
Andrey Sapati Wirya
Abstrak :
ABSTRAK
Penelitian ini bertujuan untuk memperoleh model hydrocracking dalam trickle bed reactor untuk produksi green fuel menggunakan katalis Ni-W berpenyangga silika alumina, mendapatkan ukuran reaktor trickle bed untuk perpindahan panas yang baik dan mencari kondisi optimum untuk tingkat kemurnian tinggi. Penelitian diawali dengan studi pustaka tentang green fuel, kinetika hydrocracking, trickle bed reactor dan pemodelan. Kemudian model ditentukan dan dikembangkan untuk dilakukan simulasi serta diverifikasi untuk menguji konvergensi. Hasil simulasi dianalisis secara teknis untuk mendapatkan kondisi optimum dengan kemurnian yang tinggi. Dari hasil simulasi didapatkan bahwa kemurnian produk diesel mencapai 44,22 pada temperatur 420 0C. Produk kerosin dapat mencapai kemurnian sebesar 21,39 pada temperatur 500 0C. Produk nafta dapat mencapai kemurnian sebesar 25,30 pada temperatur 500 0C. hr> ABSTRAK
The purposes of this research are to get hydrocracking model in trickle bed reactor to produce green fuel using Ni W supported alumina silica catalyst, to determine the size of trickle bed reactor which provide good heat transfer, and to get optimum condition for high purity product. The research is initiated by literature study of green fuel, hydrocracking kinetics, trickle bed reactor, and basic of modeling. The model is determined and developed to perform simulation under different conditions. Model is verified to check the convergence. Simulation results are analyzed technically to achieve optimum condition with high product purity. Simulation results show that the diesel product purity is 44.22 at 420 0C. The Kerosene product could achieve purity of 21.39 at 500 0C. The naphta product could achieve purity of 25.30 at 500 0C.
2017
S68050
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taqi Aufa
Abstrak :
ABSTRACT
Tujuan dari penelitian ini adalah untuk mengembangkan model dua dimensi axisimmetri untuk reaksi hidrogenasi parsial FAME menjadi H-FAME, dan mengetahui pengaruh dari parameter proses dan parameter geometri terhadap performa reaktor. Penelitian ini terdiri dari studi literatur, kinetika reaksi, pemodelan reaktor, dan analisis dan pembahasan. Model matematis dikembangkan dari persamaan-persamaan neraca massa fasa cair, fasa gas, dan fasa padat, neraca momentum hukum darcy dan neraca energi. Model selanjutnya diselesaikan menggunakan metode computational fluid dynamic CFD yang disolusikan menggunakan software COMSOL multiphysic 5.3. Reaktor yang dimodelkan berbentuk silinder dengan diameter 0.8 m, tinggi 16 m dan memiliki pola aliran searah kebawah. Parameter operasi reaktor adalah: tekanan umpan 611 kPa, temperatur umpan 433 K, laju alir fasa cair 0,1921 m3/s, laju alir fasa gas 0,8339 m3/s, dan diameter katalis 1 mm. Berdasarkan hasil simulasi didapatkan konversi 79,56, yield asam stearat 28,3, dan jatuh tekenan 6,9 kPa/m.
ABSTRACT
The purpose of this research is to develop two dimention axisymetry model for partial hydrogenation of FAME to H FAME and to understand the effect of process and geometry parameter to its performance. This research consist of literature study, reaction kinetic, reactor modelling, and analysis. Mathematical model is develop from mass gas, liquid, solid, momentum darcy law and energy balance equations. The model is solved by using computational fluid dynamic method CFD by using COMSOL multiphysic 5.3. The reactor modelled has 0.8 m diameter and 16 m height with cocurrent downfall fluid pattern. The reactor modeled at inlet temperature 433 K, inlet pressure 611 kPa, liquid flow rate 0.1921 m3 s, gas flowrate 0.8339 m3 s and catalyst diameter 1 mm. The simulated reactor able to achieve 79.56 conversion, stearic acid yield of 28.3, and pressure drop of 6.9 kPa m.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reynaldi
Abstrak :
Sebagian besar bioetanol di Indonesia diproduksi dari tanaman pangan yang menimbulkan persaingan dengan industri pangan, menyebabkan tidak stabilnya harga bioetanol dan impor bahan baku. Salah satu alternatif produksi bioetanol adalah melalui fermentasi gas sintetis dengan Clostridium ragsdalei. Penelitian ini bertujuan untuk mendapatkan parameter kinetika reaksi dan perpindahan massa reaksi fermentasi, juga pengaruh variasi kondisi terhadap reaksi. Dilakukan pembuatan model reaktor unggun trickle menggunakan COMSOL Multiphysics®. Didapatkan parameter kinetika reaksi sebagai berikut: vmax,CO 70,797 mmol/g.h, vmax,H2 20,101 mmol/g.h, Ks,CO 0,171 mmol/L, Ks,H2 1,284 mmol/L, KI,EtOH 217 mmol/L, KI,HAc 962 mmol/L, KI,CO 0,136 mmol/L, YX,CO 3,925 g/mol, YX,H2 0,245 g/mol, vAcrmax,CO 26,748 mmol/g.h, vAcrmax,H2 2,652 mmol/g.h, KAcrsCO 388 mmol/L, KAcrsH2 464 mmol/L, dan kd 0,362 1/h. Parameter kinetika memiliki rentang AARD 7,443 sampai 39,454% dibandingkan data eksperimen. Kemudian didapatkan koefisien perpindahan massa gas-cair keseluruhan (kGL­a) untuk gas H2 43,860 sampai 115,750, untuk gas CO 13,082 sampai 35,487, dan untuk gas CO2 13,108 sampai 35,571. Didapat nilai optimal dari berbagai variasi sebagai berikut: laju alir cairan 500 ml/menit dan laju alir gas 4,6 ml/menit, konsentrasi awal bakteri 0,4 OD660, dan komposisi gas sintetis 100% gas CO mampu memproduksi bioetanol sebesar 214,260 mol/m3 dan asam asetat sebesar 143,130 mol/m3. ..... Majority of bioethanol in Indonesia is produced from food crops which creates competition with food industry, instability to bioethanol prices and increase of raw materials import. One alternative for bioethanol production is through fermentation of synthetic gas with Clostridium ragsdalei. This research aims to obtain kinetic parameters, mass transfer parameters, and analyze the effect of system conditions to reaction. This research was conducted through modelling of trickle bed reactor using COMSOL Multiphysics®. The estimated values ​​for the kinetics parameters are: vmax,CO 70,797 mmol/g.h, vmax,H2 20,101 mmol/g.h, Ks,CO 0,171 mmol/L, Ks,H2 1,284 mmol/L, KI,EtOH 217 mmol/L, KI,HAc 962 mmol/L, KI,CO 0,136 mmol/L, YX,CO 3,925 g/mol, YX,H2 0,245 g/mol, vAcrmax,CO 26,748 mmol/g.h, vAcrmax,H2 2,652 mmol/g.h, KAcrsCO 388 mmol/L, KAcrsH2 464 mmol/L, and kd 0,362 1/h with AARD 7.443 to 39.454%. The range of overall gas-liquid mass transfer coefficient (kGL­a) for H2 gas is 43.860 to 115.750, for CO gas 13.082 to 35.87, and for CO2 gas 13.108 to 35.571. The optimal parameter values ​​ are 500 ml/minute liquid flow rate, 4.6 ml/minute gas flow rate, 0.4 OD660 initial concentration of bacteria, and 100% CO synthetic gas which is capable of producing 214.260 mol/m3 of bioethanol and 143.130 mol/m3 of acetic acid.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library