Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19 dokumen yang sesuai dengan query
cover
Abstrak :
Robot pengikut garis dengan control PID merupal-can robot yang bergerak otomatis mengikuti garis yang berada dibawahnya Masalah yang dihadapi dalam perancangan robot ini adalah sistem sensor pengikut garis dari robot, arsitektur perangkat keras tennasuk elektronik dan mekanik, dan organisasi dari perangkat lunak sebagai pusat dari control robot tersebut. Tugas Akhir ini akan menjelaskan peraneangan dan pembuatan Serta hasil ujicoba robot pengikut garis ini. Robot ini rnenggunakan mikrokontroller ATMEGA893S sebagai pusat kontrol dan sensor cahaya untuk mendeteksi garis. Sistem mekanik dari robot ini dirancang untuk dapat menjalankan robot dengan menggunakan dua buah motor, dengan sensor garis pada sisi depan dan belakang robot. Kecerdasan dari robot unmk rnengikuti garis ini didapatkan dengan rnengunakan program yang diinputkan ke dalam mikrokontroller dengan memanfaatkan input dari sensor garis pada sisi depan dan sisi belakang. Metode control yang digunakan untuk robot penglkut garis ini adalah PID (Proportional Integral dan Derivative). Input dari kontrol ini adalah adanya error antara nilai setpoint dengan nilai variabel output. Kontrol ini akan berfungsi untuk mengkoreksi error untuk mencapai nilai nol. Lebar garis yang digunakan sebagai pemandu jalan robot adalah selebar 3 cm.
Fakultas Teknik Universitas Indonesia, 2006
S40720
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reggi Prasetyo Kurniawan
Abstrak :
ABSTRAK
Teknologi proses fabrikasi dan manufaktur terus berkembang dari zaman ke zaman. Penggunaan robot sebagai media untuk membantu dalam melakukan penyatuan suatu produk menjadi tantangan di masa ini. Robot las menjadi pilihan bagi banyak perusahaan otomotif dalam membantu dalam proses pembuatan produk kendaraannya. Dalam penelitian ini akan dilakukan pengembangan untuk membuat robot las tipe gantry robot sebagai salah satu pendekatan untuk mempelajari robot yang telah ada di industri produksi. Tujuan dari penelitian ini adalah untuk mengembangkan sistem awal penggunaan robot las yang berfokus pada pengaruh kecepatan dari pergerakan 2 dimensi robot pada sumbu X dan sumbu Y terhadap kemampuan repeatability dan accuracy robot. Robot akan menggunakan mikrokontroller sebagai alat pengontrol pergerakan pada tiap axis yang dimiliki robot. Pengujian robot ini akan dilakukan dengan metode pengukuran menggunakan CMM (Coordinate Measurement Machine) dengan nilai error sebesar 0,02 mm. Pengukuran dilakukan dengan 5 karateristik kecepatan yang ditempuh robot sepanjang 125 mm. Berdasarkan hasil pengujian didapati bahwa kemampuan sumbu X dan sumbu Y pada robot dalam mengulangi setiap pergerakan(repeatability) dengan hasil terbaik pada kecepatan 2,5 mm/s sebesar 0,1 mm. Besaran penyimpangan terkecil sebesar 0,19 mm terjadi pada kecepatan 2,5 mm/s. Kemampuan repeatability dan accuracy robot membuktikan robot dapat bekerja dengan baik.
ABSTRACT
The Development of technology in fabrication and manufacture system is increased nowadays. The used of robot as a mediator to assembly any kind of product become a new challenge in this era. Welding robots become a choice for some otomotive industry to produce their vehicle product. This research will make an artificial welder robot with type of gantry robot as training robot for learn more deep about industrial robot. The purpose of this paper is to delevoped a starting system of welding robot that focus in 2 dimensional movements from X axis and Y axis. This robot will be controlled by microcontroller as a tool to control robot?s movement. The robot will be tested with measurement method by CMM (Coordinates Measurement Machine) that have an error about 0,02 mm. The measurement method will contain about 5 charateristic of speed that make robot moves for a constant distance about 125 mm. Based on the result from the test, X and Y axis can make a movement with best repeatability about 0,1mm by using velocity 2,5 mm/s. The smallest standard deviation is reached about 0,19 mm by using velocity 2,5 mm/s . Based on this result, Robot has a good performance in repeatability and accuracy, this proved that robot can work kindly.
2016
S63242
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anthony Ivan Sunardi
Abstrak :
Banyak permasalahan yang dapat terjadi ketika melakukan uji coba algoritma untuk melakukan pengendalian trajectory following dari Quadrotor. Umumnya dibutuhkan simulasi sebelum uji coba perangkat keras untuk membuktikan bahwa tidak ada kesalahan dalam algoritma pengendaliannya. Simulasi Quadrotor yang digunakan umumnya menggunakan MATLAB. Sistem simulasi dengan menggunakan MATLAB memiliki keterbatasan dalam hal visualisasi, penyederhanaan model, serta tidak dapat diimplementasikan secara langsung pada perangkat keras Quadrotor yang digunakan. Untuk itu, penelitian ini mempertimbangkan penggunaan ROS dan Gazebo sebagai alternatif simulasi Quadrotor yang akan digunakan untuk menguji algoritma pengendalian trajectory following dari Quadrotor yang akan diimplementasikan. ROS adalah sebuah framework untuk sistem robotika. Adapun Gazebo untuk mengvisualisasikan model 3D dari Quadrotor, lingkungannya, dan interaksinya sesuai hukum fisika. Dalam penelitian ini, digunakan library MAVROS pada ROS untuk mengendalikan model Quadrotor. Penelitian diawali dengan memodelkan Quadrotor sesuai perangkat keras yang digunakan. Selanjutnya, diimplementasikan algoritma pengendalian trajectory following menggunakan program dengan framework ROS. Setelah itu, dilakukan pengujian kemampuan sistem untuk mengsimulasikan perpindahan posisi dengan berbagai pola trajectory. Hasil simulasi menunjukan Quadrotor dapat mengikuti pergerakan trajectory yang telah ditentukan oleh algoritma pengendali trajectory following yang diimplementasikan.
Many problems can arise when testing trajectory following control algorithms for a Quadrotor. Generally, a simulation is needed before undergoing hardware testing to prove that there is no mistake in its control algorithm. Quadrotor simulations commonly uses MATLAB. A Quadrotor simulation system that uses MATLAB has issues such as limitations in the visualization, oversimplification of the model, and cannot be directly implemented into a Quadrotor hardware. Because of that, this research considers the use of ROS and Gazebo as an alternative for developing a Quadrotor simulation, which will be used to test a trajectory following control algorithm implemented in this research. ROS is a framework for robotic systems. Gazebo is used to develop the 3D model of the Quadrotor, its environment, and also the interactions occurring following the laws of physics. In this research, a library named MAVROS is used on ROS to control the Quadrotor model. This research starts by modelling the Quadrotor according to the hardware specifications that will be used. Afterwards, a trajectory following control algorithm is developed and implemented using a program with the ROS framework. Afterwards, tests are conducted to determine the capabilities of the simulation to simulate change in position in multiple trajectory patterns. The results from the simulation shows that the Quadrotor can follow the trajectory movement that is decided by the trajectory following control algorithm that is implemented.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68979
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simbolon, Isak Martin
Abstrak :
Pergerakan robot dalam pertunjukan atau pameran robot seringkali terlihat tidak alami karena robot harus dikendalikan dengan tombol dari perangkat tertentu, misalkan joystick dan papan tombol. Dalam penelitian ini akan dibahas perancangan pergerakan robot berdasarkan pergerakan tangan manusia menggunakan sensor Myo Armband. Pergerakan robot yang disesuaikan dengan pergerakan tangan akan membuat kesan robot digerakkan secara alami. Penelitian ini menggunakan nilai IMU yang mewakili posisi tangan dan nilai EMG yang selanjutnya dikonversikan ke postur tangan untuk menggerakkan robot. Pengolah data yang digunakan adalah Arduino Mega yang tehubung dengan Myo Armband dengan koneksi Bluetooth dan terhubung ke robot dengan menggunakan modul 32-channel servo controller. Hal ini menjadi suatu kelebihan dalam rancang bangun karena tidak dibutuhkan perantara berupa PC atau smartphone untuk pengambilan data. Dari rancang bangun yang sudah dibuat, didapat hasil bahwa robot dapat bergerak sesuai dengan perintah hasil olahan data pergerakan tangan. Robot dapat digerakkan ke posisi dasar (atas, bawah, tengah, kiri, kanan) dan dikombinasikan dengan postur tangan untuk menggerakkan penggenggam ke posisi mengunci dan melepas benda. Melalui kombinasi ini juga robot digerakkan melalui pergerakan pada sumbu kartesian (task-space) dan pergerakan sudut masing-masing servo (joint-space).
The movement of robots in a robot show or exhibition often looks unnatural because the robot must be controlled with buttons from certain devices, for example joysticks and keyboards. In this study we will discuss the design of robot movements based on human hand movements using the Myo Armband sensor. The movement of the robot that is adjusted to the movement of the hand will make the impression of the robot being moved naturally. This study uses the IMU value that represents the hand position and the EMG value which is then converted to the hand posture to move the robot. The data processor used is Arduino Mega which connects with Myo Armband with a Bluetooth connection and is connected to a robot using a 32-channel servo controller module. This becomes an advantage in the design of the build because it is not needed an intermediary in the form of a PC or smartphone for data retrieval. From the design that has been made, the results obtained that the robot can move in accordance with the command processed by hand movement data. Robots can be moved to the basic position (up, down, center, left, right) and combined with hand postures to move the gripper to the position of locking and releasing objects. Through this combination, robots are also moved through movement on the cartesian axis (task space) and the angular movement of each servo (joint space).
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thariq Hadyan
Abstrak :
Quadcopter merupakan wahana terbang yang memiliki 4 rotor bersifat underactuated. Sifat quadcopter yang merupakan sistem yang kompleks akibat coupling antar variabelnya menjadikan desain pengendali yang cukup rumit. Diperlukan adanya pengendali yang mudah untuk dapat diaplikasikan pada quadcopter. Untuk melakukan percobaan pengaplikasian pengendali pada quadcopter, sistem pengendali tersebut harus dilakukan percobaan pada simulasi untuk mengetahui hasilnya. Oleh karena itu, peneliti mengusulkan pengendalian DIC yang berbasis deep neural networks (DNN) dan long-short term memory (LSTM) diujikan pada simulator sebelum akhirnya pada quadcopter asli. LSTM digunakan memiliki arsitektur pendukung untuk data sekuensial sebagaimana pergerakan trajektori. Sistem kendali dengan LSTM ini dihasilkan galat MSE yang lebih rendah dibanding DNN. Kinerja LSTM lebih baik dibandingkan dengan DNN. Selain itu, terdapat beberapa faktor – faktor terjadi peningkatan galat ketika diintegrasikan pada simulator Gazebo untuk bahan evaluasi terhadap pengendali berbasis yang sama diaplikasikan pada quadcopter aslinya. ......Quadcopter is a flying vehicle that has 4 rotors that are underactuated. The nature of the quadcopter which is a complex system due to the coupling between the variables makes the controller design quite complicated. An easy controller is needed to be applied to the quadcopter. In order to experiment with the application of the controller on the quadcopter, the control system must be experimented with in a simulation to find out the results. Therefore, the researcher proposes that DIC control based on Deep Neural Network and Long-Short Term Memory be tested on a simulator before finally on a real quadcopter. LSTM is used to have a supporting architecture for sequential data as well as trajectory movement. The controller with this LSTM produces a lower MSE error than DNN. LSTM performance is better compared to DNN. In addition, there are several factors that increase the error when integrated into the simulator for evaluation of the same based controller applied to the original quadcopter.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Adhi Wibawa
Abstrak :
Pertandingan sepak bola antar robot adalah salah satu tantangan dalam dunia robotik yang diadakan untuk mengembangkan dunia robotik dan kecerdasan buatan serta sebagai ajang bertukar ilmu bagi peneliti di seluruh dunia. Hal inilah yang mendorong penulis untuk membuat sebuah strategi untuk sepak bola antar robot. Strategi ini dibuat dengan menggunakan konsep koordinat untuk merepresentasikan posisi robot dalam lapangan. Strategi tersebut kemudian diuji dan dianalisa untuk mengukur kinerja strategi di berbagai situasi. Robot soccer is one of the challenges in robotic and artificial intelligence world as one of the place to sharing knowledge for researcher around the world. This encourages the writer to make a strategy for robotic soccer.This strategy was made using coordinat concept to represent robot position in the field. This strategy then tested and analyzed to measure the performance of this strategy in various situations.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Nurdian Kartika Sari
Abstrak :
Otomatisasi merupakan ciri kemajuan teknologi. Berbagai industri telah memanfaatkan kemajuan ini dalam proses manufaktur. Dari proses milling, assembly, welding, hingga proses grinding semuanya digerakkan secara otomatis oleh robot. Robot memungkinkan proses manufaktur berjalan cepat, dengan tingkat kesalahan yang rendah. Akan tetapi robot manufaktur yang umum digunakan saat ini, yakni robot artikulasi dengan kontrol posisi numerik, masih memiliki kelemahan tidak mampu mengindentifikasi perubahan gaya-gaya disekitarnya. Dengan karakteristik seperti ini, robot tidak dapat diaplikasikan untuk proses produksi yang memerlukan indera peraba manusia seperti deburring, polishing, dan proses perakitan yang presisi. Dengan acuan sistem pendeteksi gaya multi aksis penelitian pertama, dikembangkan suatu sistem yang lebih optimal baik ditinjau dari segi kesensitifan dalam pembacaan gaya. Sistem Pendeteksi Gaya Multi Axis baru ini memungkinkan robot artikulasi untuk mendeteksi gaya yang terjadi pada end effector dalam arah x, y, 45 derajat xy, -45 derajat xy, dan z relatif terhadap koordinat end effector. Peranti utama yang digunakan untuk pendeteksi gaya adalah strain gage. Penelitian ini terfokus pada perancangan mekanik sebagai tranducer, perancangan konfigurasi jembatan Wheatstone sebagai rangkaian elektrikal strain gage, pengkondisian sinyal dan akuisisi data Sistem Pendeteksi Gaya Multi Axis. Penelitian ini berhasil menghasilkan sebuah alat pendeteksi baru yang memiliki jangkauan baca yang lebih tinggi, lebih akurat, serta memilki sensitifitas yang lebih tinggi serta sesuai untuk aplikasi Robot Artikulasi 5 Derajat Kebebasan RVM1 yang tersedia di Laboratorium Departemen Teknik Mesin FTUI.
Otomatisation is one characteristic of high technology. Many industries have applied this technology to manufacturing process. From milling, assembly, welding, and so do grinding, are operated otomatically by robots. Robots give an opportunity for increasing the rapidity of manufacturing processes with fewer error levels. Most industrial robots in the use today, which are the articulated robot with numerically position controlled, still have a trouble for identifying the changes in its environments. This characteristic have created a limitation for the application of robot in the manufacturing processes that need the sense of force such as deburring, polishing, and precision assembly process. Multi Axis Force Detector System in the first research will be signed as reference to develop a more optimum system which have high sensitivity to detect. The main device for force detection is the strain gage. The new multi axis force detector system allow the robot to detect the force from the end effectors in x , y axis, 45 degree xy, -45 degree xy, and z relative to end effector coordinate system. The main device for force detection is the strain gage. Focuses on this research are in the mechanical transducer design, Wheatstone bridge configuration for optimum works of strain gage, signal conditioning, and data acquisition of Multi Axis Force Detector. It have been proved that the new multi axis force detector system have higher range of force measurement since it weight less than the first force detector, more accurate, and have higher sensitivity that suitable for application of RV-M1 5 Articulated Robot in the Manufacturing Laboratory, Mechanical Engineering Department University of Indonesia.
2008
S37324
UI - Skripsi Open  Universitas Indonesia Library
cover
Brianti Satrianti Utami
Abstrak :
Otomatisasi merupakan ciri kemajuan teknologi. Berbagai industri telah memanfaatkan kemajuan ini dalam proses manufaktur. Dari proses milling, assembly, welding, hingga proses grinding semuanya digerakkan secara otomatis oleh robot. Robot memungkinkan proses manufaktur berjalan cepat, dengan tingkat kesalahan yang rendah. Akan tetapi robot manufaktur yang umum digunakan saat ini, yakni robot artikulasi dengan kontrol posisi numerik, masih memiliki kelemahan tidak mampu mengindentifikasi perubahan gaya-gaya disekitarnya. Dengan karakteristik seperti ini, robot tidak dapat diaplikasikan untuk proses produksi yang memerlukan indera peraba manusia seperti deburring, polishing, dan proses perakitan yang presisi. Dengan acuan sistem pendeteksi gaya multi aksis penelitian pertama, dikembangkan suatu sistem yang lebih optimal baik ditinjau dari segi kesensitifan dalam pembacaan gaya dan segi proses manufaktur. Piranti utama yang digunakan untuk pendeteksi gaya adalah strain gage. Penelitian ini terfokus pada proses manufaktur dan optimasinya pada Sistem Pendeteksi Gaya Multi Axis, perancangan konfigurasi jembatan Wheatstone sebagai rangkaian elektrikal strain gage, pengkondisian sinyal dan akuisisi data Sistem Pendeteksi Gaya Multi Axis. Pada akhirnya, penelitian memperoleh keluaran berupa optimasi proses manufaktur pada suatu Sistem Pendeteksi Gaya Multi Axis dibandingkan dengan sistem pada penelitian sebelumnya, baik ditinjau dari segi manufacturability, cost, bobot alat, waktu pemesinan hingga berdampak pada deviasa data yang kecil.
Otomatisation is one characteristic of high technology. Many industries have applied this technology to manufacturing process. From milling, assembly, welding, and so do grinding, are operated otomatically by robots. Robots give an opportunity for increasing the rapidity of manufacturing processes with fewer error levels. Most industrial robots in the use today, which are the articulated robot with numerically position controlled, still have a trouble for identifying the changes in its environments. This characteristic have created a limitation for the application of robot in the manufacturing processes that need the sense of force such as deburring, polishing, and precision assembly process. Multi Axis Force Detector System in the first research will be signed as reference to develop a more optimum system which have high sensitivity to detect force and easy to manufactur. The main device for force detection is the strain gage. Focuses on this research are in the manufacturing process and its optimization on Multi Axis Force Detector System, Wheatstone bridge configuration for optimum works of strain gage, signal conditioning, and data acquisition of Multi Axis Force Detector. Finally, the aims of this research are optimization on the manufacturing process of the Multi Axis Force Detector System which are more optimum in manufacturability, cost, load of the System, and time estimation of the manufacturing process sides than on the first research. This optimization impact the data deviation, which become less than on the first.
2008
S37340
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutahaean, William Yehezkiel
Abstrak :
Soft robotics merupakan bidang penelitian robot yang bertujuan untuk mengembangkan robot dalam aplikasi di berbagai bidang baru karena kemampuannya beradaptasi dan berinteraksi yang aman dengan manusia. Berbeda dengan robot pada umumnya yang merupakan robot kaku digunakan dalam berbagai bidang terutama otomasi manufaktur. Pada penulisan skripsi ini fokus utama ditujukan untuk membahas pengembangan kontrol dari robot berupa sarung tangan untuk rehabilitasi dengan menggunakan mekanisme pendukung. Mekanisme pendukung tersebut adalah sebuah soft robotic yang dikembangkan oleh peneliti di Harvard yang dinamai Fluid Origami-skeleton Artificial Muscles (FOAMs). Berdasarkan fokus tersebut, tujuan utama dari penelitian ini merupakan merancang dan mengimplementasikan sistem kontrol sebagai pendukung pergerakan soft actuator FOAMs sehingga memungkinkan gerakan yang tepat dan terkoordinasi. Sistem kontrol dirancang berdasarkan integrasi komponen-komponen utama sistem kontrol, yaitu feedback sensor, aktuator, dan mikrokontroler. Desain sistem kontrol mengandalkan algoritma kontrol yang berdasarkan dengan PID, dengan komponen pompa sebagai integral dari sistem, dan valve sebagai derivative atau oposisi dari kegunaan pompa dan merupakan sebuah tujuan utama dari penulisan skripsi ini. Setelah melakukan pengujian, hasil pengujian tersebut menunjukkan keefektifan sistem kontrol dan kemampuan sistem untuk memberikan kesesuaian gerakan yang diinginkan. Dapat ditunjukkan juga bahwa soft actuator yang didukung dengan sistem kontrol mampu mengangkat beban 100 gram atau lebih daripada berat jari tangan pada umumnya dengan membutuhkan waktu hanya 13 detik pada kekuatan maksimum pompa (-60 kPa). Pengembangan sistem kontrol untuk soft robotic berbasis FOAMs merupakan sebuah langkah awal untuk menggapai potensi penuh dari bidang yang semakin berkembang ini. Pengembangan selanjutnya dari FOAM ini juga tidak hanya terhenti pada sebuah aplikasi ini saja, melainkan masih banyak potensi selanjutnya. ......Soft robotics is a field of robot research that aims to develop robots in applications in various new fields because of their ability to adapt and interact safely with humans. In contrast to robots in general, which are rigid robots used in various fields, especially manufacturing automation. In this thesis, the main focus is aimed at discussing the development of control of robots in the form of gloves for rehabilitation using a support mechanism. The supporting mechanism is a soft robotic developed by researchers at Harvard called Fluid Origami-skeleton Artificial Muscles (FOAMs). Based on this focus, the main objective of this research is to design and implement a control system to support the movement of the FOAMs soft actuator to enable precise and coordinated movements. The control system is designed based on the integration of the main components of the control system, namely feedback sensors, actuators, and microcontrollers. The design of the control system relies on a PID-based control algorithm, with the pump component as the integral of the system, and the valve as the derivative or opposition of the pump's utility. After conducting the tests, the results showed the effectiveness of the control system and the ability of the system to provide the desired motion compliance. It can also be shown that the soft actuator supported with the control system is able to lift a load of 100 grams or more than the weight of a typical hand finger by taking only 13 seconds at the maximum power of the pump (-60 kPa). The development of a control system for soft robots based on FOAMs is a first step towards realizing the full potential of this growing field. Further development of FOAMs should not stop at this application, but there are many more potentials.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
Robot motion control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed, design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors, new control algorithms for industrial robots, nonholonomic systems and legged robots, and different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others, multiagent systems consisting of mobile and flying robots with their applications.
London : Springer, 2012
e20421066
eBooks  Universitas Indonesia Library
<<   1 2   >>