Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Amarina Ashar Ariyanto
"Penelitian ini bertujuan untuk mengkaji fenomena persepsi antar kelompok, khususnya fenomena bias antar kelompok pada pengguna jalan di Jakarta. Bias antar kelompok adalah kecenderungan untuk mempersepsi, mengutamakan dan memperlakukan kelompok sendiri (ingroup) secara lebih baik dibandingkan kelompok lain (outgroup). Partisipan penelitian ini adalah 360 pengguna jalan, terdiri dari pengemudi kendaraan pribadi (N= 45), pengemudi motor (N= 51), pengemudi kendaraan umum (N= 50), polisi lalu lintas (N= 54), pejalan kaki (N= 49), pedagang kaki lima (N= 58) dan satuan pengaman pasar atau satpol PP (N= 58). Pengambilan data dilakukan dengan menggunakan kuesioner (tujuh versi kuesioner), dan bias antar kelompok yang terjadi digali melalui tiga macam cara, yaitu bias persepsi antar kelompok, bias atribusi, dan alokasi sumber daya antar kelompok. Temuan studi menunjukkan adanya kecenderungan bias persepsi yang bervariasi antar kelompok pengguna jalan raya, baik dalam bentuk bias persepsi, bias atribusi maupun alokasi sumber daya. Bias yang sangat kuat untuk atribusi terhadap tingkah laku yang positif terlihat pada pengendara motor, pengendara kendaraan umum, dan pedagang kaki lima. Untuk tingkah laku negatif terdapat bias pada semua kelompok penelitian. Bias persepsi juga terdapat pada semua kelompok penelitian, demikian pula dengan alokasi sumber daya.

The goal of this study is to examine intergroup bias among people who use roads in Jakarta. Intergroup bias refers to the tendency to prioritize, treat and perceive in-group members more favorable than out-groups. Three different groups of road users participated in this study: private drivers, motor riders, and public transportation drivers. Intergroup bias is measured as perception bias and attribution bias. The findings show that both forms of bias occur among the road users. Intergroup attribution bias that is found among the three groups are more in-group than out-group attribution bias. The private car drivers, motor riders, and public transportation drivers tend to attribute positive behavior of in-group to internal factor and negative behavior of in-group to external factors. Index of effect size in perception bias indicates substantive levels and represents large effect in the population."
Depok: Fakultas Psikologi Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Arnetta Nandy Pradana
"Artificial intelligence mulai diimplementasikan di Jakarta sebagai solusi untuk mengurai permasalahan lalu lintas, seperti mengotomatisasi pengaturan sinyal lalu lintas dan mengurangi kemacetan. Pemasangan ini merupakan tahap awal pengintegrasian Intelligent Transportation System (ITS) sehingga tantangan operasionalisasi sangat besar. Selain itu, tantangan terkait etika dan perlindungan data pribadi masyarakat juga turut dirasakan. Penelitian ini bertujuan untuk mengetahui persepsi pengguna jalan terhadap implementasi AI pengurai kemacetan, terutama dari sisi efektivitas dan dampaknya. Persepsi publik merupakan salah satu kriteria membentuk kebijakan yang berkelanjutan. Dengan meneliti persepsi, diharapkan pemerintah akan lebih siap untuk menanggapi tuntutan masyarakat dan mengadopsi teknologi di perkotaan. Penelitian ini menggunakan pendekatan kuantitatif dengan teknik pengumpulan data mixed method melalui survei dan wawancara mendalam. Teknik analisis yang digunakan dalam penelitian ini adalah teknik analisis univariat dan metode ilustratif (case clarification). Untuk memetakan persepsi publik terhadap pengimplementasian ITCS, riset ini menggunakan lima dimensi, yaitu Sentiment to AI, Attitude Toward AI Development, Attitude Toward “Impact of AI to Human Society”, Attitude Toward AI Governance, dan Attitude Toward AI Ethics. Hasil penelitian ini menunjukkan persepsi positif pengguna jalan terhadap pengimplementasian ITCS di Jakarta. Namun, beberapa kekurangan masih ditemukan yaitu AI belum maksimal karena belum terintegrasi di seluruh jaringan jalan dan belum dilaksanakannya evaluasi terhadap pengimplementasiannya.

Artificial intelligence is being implemented in Jakarta as a solution to traffic problems, such as automating traffic signal settings and reducing congestion. This installation is the early stage of integrating the Intelligent Transportation System (ITS), and thus the operational challenges are substantial. In addition, there are also challenges related to ethics and the protection of people's personal data. This research aims to understand road users' perceptions of the implementation of AI to alleviate congestion, particularly in terms of its effectiveness and impact. Public perception is crucial for developing sustainable policies. By analyzing these perceptions, the government is expected to be more responsive to public needs and better equipped to adopt urban technologies. The researcher assumes that road users' perceptions of the ITCS are negative, considering the current road conditions and the initial stage of AI implementation. Furthermore, this study uses a quantitative approach with mixed-method data collection techniques through surveys and in-depth interviews. The analytical techniques used in this research are univariate analysis and the illustrative method (case clarification). To map public perception of ITCS implementation, this research employs five dimensions: Sentiment to AI, Attitude Toward AI Development, Attitude Toward "Impact of AI on Human Society," Attitude Toward AI Governance, and Attitude Toward AI Ethics. The results of this study indicate a positive perception of road users towards the use of ITCS in Jakarta. However, some shortcomings are still found, namely that AI has not been maximized due to lack of integration across the entire road network and the absence of an evaluation of its implementation."
Depok: Fakultas Ilmu Administrasi Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ririen Nathalia Anggita
"[Perusahaan X adalah perusahaan yang bergerak dibidang produksi beton, dimana pada proses kerja melibatkan alat transportasi seperti truck, tanki, loader, mobil, dan lain sebagainya. Jenis kecelakaan kerja yang sering terjadi berupa kecelakaan kerja lalu-lintas. Pengendalian-pengendalian telah dilakukan dan diterapkan namun angka kecelakaan tetap saja tinggi. Agar pengendalian tepat sasaran, diperlukan analisis atau kajian terhadap bahaya dan risiko keselamatan lalu-lintas di dalam plant perusahaan X. Analisis risiko yang tajam dan mendalam menghasilkan pengendalian yang tepat sasaran. Analisis risiko dilakukan dengan menggunakan standard AZ/NZS 4360 : 2004 dengan mempertimbangkan probability, konsekuensi, dan tingkat risikonya. Metode yang digunakan adalah kualitatif bersifat deskriptif melalui wawancara mendalam dan observasi. Hasil penelitian ini menunjukkan bahwa terdapat 32 potensi bahaya dan 46 risiko keselamatan lalu lintas di dalam plant perusahaan X dimana hasil analisis tingkat risiko berdasarkan pengendalian yang sudah ada, terdapat 16 risiko sangat tinggi, 15 risiko tinggi, 5 sedang, dan 10 rendah. Enam belas risiko sangat tinggi merupakan 12 faktor pengendara dab 4 faktor jalan.
Kata Kunci: Analisis Risiko, Keselamatan Lalu-lintas, Kecelakaan Kerja, Kecelakaan Lalu-Lintas, Pengendara, Jalan, Kendaraan, Lingkungan.;X company is one of a company that produce ready use concrete. Most of their work process are involving vehicle (truck, tank, loader, car, etc). The type of workplace accident that usually happened is traffic accident. Controls are being planned and applied, but the accident still happen. To make an appropriate controls, company needs to do the risk analysis about risk, hazard, and unexpected event in the plant. Risk analysis can be done by the use of AS/NZS 4360 : 2004 standard and assess the probability, consequences, and level of risk. Method that used is descriptive-qualitative including observation and deep interview. The result showed that the potential hazard found are 32 and risk found are 46, which is the level of risk is 16 extremely high, 15 high, 5 moderete, and 10 low.;X company is one of a company that produce ready use concrete. Most of their work process are involving vehicle (truck, tank, loader, car, etc). The type of workplace accident that usually happened is traffic accident. Controls are being planned and applied, but the accident still happen. To make an appropriate controls, company needs to do the risk analysis about risk, hazard, and unexpected event in the plant. Risk analysis can be done by the use of AS/NZS 4360 : 2004 standard and assess the probability, consequences, and level of risk. Method that used is descriptive-qualitative including observation and deep interview. The result showed that the potential hazard found are 32 and risk found are 46, which is the level of risk is 16 extremely high, 15 high, 5 moderete, and 10 low.;X company is one of a company that produce ready use concrete. Most of their work process are involving vehicle (truck, tank, loader, car, etc). The type of workplace accident that usually happened is traffic accident. Controls are being planned and applied, but the accident still happen. To make an appropriate controls, company needs to do the risk analysis about risk, hazard, and unexpected event in the plant. Risk analysis can be done by the use of AS/NZS 4360 : 2004 standard and assess the probability, consequences, and level of risk. Method that used is descriptive-qualitative including observation and deep interview. The result showed that the potential hazard found are 32 and risk found are 46, which is the level of risk is 16 extremely high, 15 high, 5 moderete, and 10 low., X company is one of a company that produce ready use concrete. Most of their work process are involving vehicle (truck, tank, loader, car, etc). The type of workplace accident that usually happened is traffic accident. Controls are being planned and applied, but the accident still happen. To make an appropriate controls, company needs to do the risk analysis about risk, hazard, and unexpected event in the plant. Risk analysis can be done by the use of AS/NZS 4360 : 2004 standard and assess the probability, consequences, and level of risk. Method that used is descriptive-qualitative including observation and deep interview. The result showed that the potential hazard found are 32 and risk found are 46, which is the level of risk is 16 extremely high, 15 high, 5 moderete, and 10 low.]"
Universitas Indonesia, 2016
S61941
UI - Skripsi Membership  Universitas Indonesia Library