Ditemukan 2 dokumen yang sesuai dengan query
Hanifuddin Malik
Abstrak :
ABSTRAK
Penelitian ini melaporkan tingkat keberhasilan dari sistem speech recognition yang diimplementasikan ke dalam quadcopter sebagai kendali geraknya. Pada sistem speech recognition digunakan metode mel frequency cepstral coefficient MFCC sebagai feature extraction yang kemudian akan di-training menggunakan metode recursive neural network RNN . Metode MFCC sendiri merupakan salah satu metode feature extraction yang paling banyak digunakan untuk speech recognition. Metode tersebut memiliki tingkat keberhasilan yang cukup besar sekitar 80 - 95 . Pada penelitian ini akan digunakan database yang sudah ada dan database yang baru. Database yang sudah ada akan digunakan sebagai media pengukur tingkat keberhasilan metode RNN. Database yang baru akan dibuat menggunakan bahasa indonesia dan kemudian dibandingkan tingkat keberhasilannya dengan hasil dari database yang sudah ada. Suara yang masuk dari microphone akan diolah pada laptop yang telah memiliki modul DSP dengan metode MFCC untuk mendapatkan nilai karakteristiknya. Nilai karakteristik tersebut kemudian akan di-training menggunakan RNN yang hasilnya berupa perintah. Perintah tersebut akan menjadi input kendali bagi single board computer SBC yang hasilnya berupa pergerakan quadcopter.
ABSTRACT
This research reports a success rate of speech recognition systems that are implemented into quadcopter as motion control. Speech recognition system is using mel frequency cepstral coefficient method MFCC as feature extraction that will be trained using recursive neural network method RNN . MFCC method is one of the feature extraction method that most used for speech recognition. This method has a success rates about 80 95 . This research will use the existing database and the new database. Existing database will be used for measure the success rate of RNN method. The new database will be created using Indonesian language and then the success rate will be compared with results from an existing database. Sound input from the microphone will be processed on a laptop that has a DSP module with MFCC method to get the characteristic values. The characteristic values then will be trained using the RNN which result is command. The command will become a control input to the single board computer SBC which result is the movement of quadcopter.
2017
S67037
UI - Skripsi Membership Universitas Indonesia Library
Elnasari Ramadhan
Abstrak :
Teknologi drone banyak dikembangkan dan digunakan, khususnya pemantauan di medan-medan yang susah terjangkau manusia, namun metode pendeteksian manusia belum ada yang diimplementasikan pada drone. Metode pendeteksian manusia yang sedang populer sekarang seperti metode Histogram of Gradient HoG Local Binary Pattern Feature LBP dengan tingkat keberhasilan mencapai 80 , metode Deformable Part Model DPM dengan tingkat keberhasilan 50 . Penelitian ini melaporkan tingkat keberhasilan dari metode pendeteksian wajah menggunakan LBP diintegrasikan DPM yang nantinya akan coba ditanamkan sebagai penentu pergerakan drone quadcopter . Objek yang tertangkap kamera akan diolah gambarnya dengan metode LBP dan DPM, kedua metode ini berfungsi sebagai feature extraction, dimana gambar diolah sehingga didapatkan data karakteristik dari bentuk gambar yang diekstrak. Data karakteristik akan dicocokkan dengan data model wajah manusia menggunakan classification, sehingga bisa didapatkan tingkat kecocokan objek dengan model. Jika objek sesuai dengan model, akan dikirim jarak dari drone dan objek ke Single Board Computer SBC sebagai acuan pergerakkan drone untuk menggerakan Robot Operating System ROS drone untuk mendekati objek. Jika diperiksa untuk kedua kalinya objek benar-benar sesuai dengan model koordinat objek akan dikirimkan ke Ground Control Station. Dari percobaan didapatkan persentase keberhasilan pendeteksian yang lebih baik karena LBP memiliki akurasi yang baik dan DPM mengurangi jumlah model yang digunakan untuk pencocokan.
......Technology of drone has been developed and used, especially in the fields of monitoring for difficult area to reach by human, but the human detection methods are not implemented on drone yet. The most popular human detection methods are Histogram of Gradient HOG Feature Local Binary Pattern LBP with a success rate 80 , Deformable Part Model DPM with success rate 50 . This research reported a success rate of face detection method using LBP integrated with DPM that will implemented to determined the drone quadcopter movement. Objects caught on camera will be processed with LBP and DPM method, this method serve as feature extraction, where the image is processed to obtain the characteristic data from the extracted image shape. Data will be matched with models data face using classification, so that we will be obtained compatibility of object and models. If the object compatible with the models, a distance from the object to the drone will be sent to Single Board Computer SBC in the drone as a reference movement to approach the object with Robot Operating System ROS. The object will be checked for a second time to cross check the compatibility, then coordinates of the object will be sent to the Ground Control Station. The experimental will be obtained a better percentage of success rate detection because LBP has a good accuracy and DPM reduces the number of models for matching.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68874
UI - Skripsi Membership Universitas Indonesia Library