Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 47 dokumen yang sesuai dengan query
cover
Chunairil Wijaya
Abstrak :
Levoglucosan adalah sebuah komponen utama yang berbentuk cairan kental dari hasil pirolisis biomassa yang banyak dimanfaatkan sebagai pestisida buatan, growth regulators, macrolide antibiotics dan lain-lain. Biomassa tersusun atas hemisellulosa, sellulosa, lignin dan sejumlah kecil komponen organik yang masing-masing dapat terpirolisis dan terdegradasi dengan laju yang berbeda, mekanisme dan jalur yang berbeda. Diketahui bahwa, levoglucosan adalah produk yang paling banyak diperoleh dalam pirolisis selulosa dari biomassa. Biomassa yang digunakan dalam penelitian ini adalah cangkang kelapa sawit dan tandan kosong kelapa sawit. Pemilihan biomassa tersebut didasarkan dari komposisi biomassa tersebut yang mengandung > 30 % selulosa. Faktor kondisi operasi pirolisis yaitu holding time dan suhu optimum, telah diteliti sebelumnya dapat mempengaruhi yield levoglucosan. Pada penelitian ini, metode pirolisis yang dipilih adalah fast pyrolysis. Pemilihan ini dikarenakan levoglucosan akan terbentuk dari depolimerasi selulosa pada tahap awal fast-pyrolysis pada rentang  suhu 315°C-400°C dan setelah itu akan terjadi secondary reaction menghasilkan turunan levoglucosan yaitu furan dan piranosa terdehidrasi. Dalam penelitian ini, fast pyrolysis dilakukan dalam reaktor unggun tetap dengan konfigurasi looping system pada rentang suhu (450 - 550)°C, laju alir N2 adalah 1500 ml/menit dan 3000 ml/menit serta variasi biomassa adalah 51.3 gram dan 81.3 gram. Analisis levoglucosan didukung dengan instrumen GC-MS. Hasil levoglucosan pada biomassa tandan kosong sawit tidak diperoleh karena proses pirolisis tidak terjadi sampai lapisan selulosa biomassa sedangkan pada biomassa cangkang sawit diperoleh yield levoglucosan tertinggi pada suhu 500°C dengan holding time 2.4 s yaitu sebesar 2.33 % (g/g) biomassa.
Levoglucosan is a major component in the form of thick liquid from the results of biomass pyrolysis which is widely used as artificial pesticides, growth regulators, macrolide antibiotics and others. Biomass is composed of hemicellulose, cellulose, lignin and a small amount of organic components which each can be hydrolyzed and degraded at different rates, different mechanisms and pathways. It is known that levoglucosan is the product most obtained from cellulose pyrolysis of biomass. The biomass used in this study is  palm kernel shell and empty palm fruit bunches. The choice of biomass is based on the composition of the biomass containing > 30% cellulose. The factors of pyrolysis operating namely holding time and optimum temperature conditions that have been studied previously, can affect levoglucosan yield. In this study, the pyrolysis method chosen was fast pyrolysis. This selection is because levoglucosan will be formed from cellulose depolymerization in the early stages of fast-pyrolysis at a temperature range of 315°C-400°C and after that a secondary reaction will occur resulting in levoglucosan derivatives namely furan and dehydrated pyranose. In this study, fast pyrolysis was carried out in a fixed bed reactor with a looping system configuration in the temperature range (450-550)°C, the flow rate of N2 was 1500 ml/minute and 3000 ml/minute and the biomass variation was 51.3 grams and 81.3 grams. Analysis of levoglucosan was supported by the GC-MS instrument. The results of levoglucosan in the empty palm fruit bunches biomass were not obtained because the pyrolysis process did not occur until the cellulose layer of biomass while in palm kernel shell biomass was obtained the highest levoglucosan content at 500°C with a holding time of 2.4 s which was 2.33 % (g/g) biomass.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tobing, Zonster Maurits
Abstrak :
Etilena dan propilena merupakan bahan baku yang panting bagi industri petrokimia. Kedua produk ini dihasilkan dari pirolisis terhadap nafta ataupun heavy gas oil. Kelemahan dari pirolisis terhadap nafta atau heavy gas oil adalah kecilnya yield dari etilena dan propilena yang diperoleh, serta banyaknya produk samping lain yang dihasilkan. Salah satu cara yang cukup potensial adalah dengan mengganti umpan dengan etana dan propana. Dalam tulisan ini disusun model-model persamaan matematis dalam bentuk persamaan diferensial biasa orde satu yang menggambarkan keadaan nyata proses pirolisis terhadap etana dan propana secara simultan. Model matematis yang terbentuk tersusun atas 10 persamaan neraca massa, 1 persamaan neraca energi dan 1 persamaan neraca momentum. Model matematis ini diselesaikan dengan teknik numeris yaitu metode Runge-Kutta-Gill. Untuk mendapatkan kondisi operasi yang sesuai, maka dilakukan variasi pengujian terhadap beberapa variabel masukan (dalam model persamaannya) seperti suhu, tekanan, laju umpan, komposisi umpan dan rasio steam terhadap umpan. Hasil simulasi yang diperoleh menunjukkan bahwa konversi etana dan propana naik apabila terjadi kenaikan suhu, begitu pula bila tekanan Kenaikan konversi etana dan propana memiliki nilai optimum, akan tetapi konversi yang lebih tinggi akan menghasilkan kuantitas produk samping yang lebih banyak. Selain itu, perubahan komposisi propana sampai sebesar 50% dalam umpan etana tidak memberikan pengaruh yang cukup signifikan terhadap yield etilena. Contoh hasil kondisi operasi yang cukup menarik adalah apabila laju umpan sebesar 0,80 kg/kg, rasio steam terhadap umpan 0,8 kg/kg suhu keluaran reaktor 920 °C, tekanan umpan 2 atm serta komposisi etana dan propana masing-masing sebesar 70% dan 30% (mol). Pada kondisi operasi ini diperoleh konversi etana dan propana sebesar 72,7% dan 92,3%, selektivitas etilena dan propilena sebesar 53,9% dan 3,1%, serta yield etilena dan propilena masing-masing sebesar 59,9% dan 3,3%.
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49165
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alexander Yadani
Abstrak :
Biomassa adalah produk organik dari makhluk hidup dan berasal dari perkebunan atau pertanian, hutan, ternak atau bahkan sampah, juga dapat disediakan karena kandungan karbon yang tinggi dari kompon. Biomassa lebih lanjut dapat disajikan ke dalam bahan bakar dan pengawet, namun dari sudut pandang ekonomi, bahan bakar yang didapat dari penawaran biomassa kontras dengan pemanfaatannya sebagai pengawet, sehingga biomassa sebagai pengawet adalah Asap Cair. Asap cair diperoleh dari pendinginan uap proses pirolisis. Pirolisis adalah metode termokimia untuk mendekomposisi senyawa kimia dengan menaikkan suhu bahan baku. Proses pirolisis memerlukan tiga alat utama, ada pemanas, pipa penghubung yang biasa dikenal dengan Neck Reactor, dan LCS (Liquid Collecting System). Setelah bahan baku dan berubah menjadi uap, itu akan mengalir melalui kredit untuk didinginkan, sehingga asap cair bisa diperoleh. Pada suatu sudut tertentu reaktor leher akan mengubah suhu dan kecepatan uap. Untuk mengirimkan uap LCS melalui perlu pipa bengkok untuk menghubungkan mereka. Namun, data kinerja pipa masih belum diketahui bengkoknya. Oleh karena itu, simulasi menggunakan Ansys CFX adalah hasil dari mengoptimalkan pengiriman uap. Alasan menggunakan Ansys CFX adalah karena telah ditulis sebelumnya. Variasi reaktor leher diperlukan. Akan ada tiga jenis reaktor leher untuk disimulasikan yaitu 70° seperti aslinya dari percobaan, 60° dan 85°. Hasil dari simulasi ini dapat dihasilkan dalam dua jenis, tampilan samping dan fokus pada Reaktor Leher dan Outlet Pipa. Setelah mengumpulkan hasil dengan data dari Ansys CFX, dari tabel yang menunjukkan kondisi reaktor leher dibuat. Data yang diperoleh dapat digunakan untuk meningkatkan desain reaktor leher di masa depan.
Biomass is organic product of living things and come from plantation crops or agriculture, forests, livestock or even garbage, also can provide heat because of the hdycarbon content of the compond. Further biomass can be serve into fuel and preservative, however at the point when seen from the economic viewpoint, fuel got from biomass has an offering worth contrasted with its utilization as an preservative, Thus biomass as preservative is Liquid Smoke. Liquid smoke is obtained from the steam cooling of the pyrolysis process. Pyrolysis is a thermochemical method for decomposing chemical csompounds by rising the temperature on raw materials. Pyrolysis process is need three major tools, there are heater, connecting pipe or usually known as Neck Reactor, and LCS ( Liquid Collecting System). After raw material is heated and change into vapor, it will flow through neck reactor than goes to LCS to be cooled, thus the liquid smoke can be obtain. At some angle of neck reactor will change the temperature and velocity of the vapor. To deliver the vapor through LCS need a bend pipe to connect them. However, the data for performance bend pipe still unknown. Therefore simulation using Ansys CFX is needed to simulate and gather the results to make optimation of deliver the vapor. The reason of using Ansys CFX is because this application is able to simulate flow with the effect of ambient temperature and can get the details of data for each notes that has been specify beforehand. By trying to get a good amount of yield at the product, the variation of neck reactor is needed. There will be three type of neck reactor to simulate which is 70° as the original from experiment, 60° and 85°. The results from this simulation can be generated in to two type, side view and focus on Neck Reactor and Outlet Pipe. After collected the results with data from Ansys CFX, than the table that shows the condition of neck reactor is created. The data obtained may be utilized to improve the better and safer  designs for neck reactor in the future.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
New York : Academic Press, 1983
660.296 PYR
Buku Teks  Universitas Indonesia Library
cover
Agustina Rahayu
Abstrak :
Gasifikasi pada umumnya menghasilkan gas sintesis dengan rasio mol H2/CO < 2. Gasifikasi dengan menggunakan uap air dapat meningkatkan komposisi H2 dalam gas sintesis. Kinetika reaksi gasifikasi dapat ditingkatkan dengan menggunakan katalis K2CO3. Laju pemanasan terkontrol menentukan ukuran pori arang yang berpengaruh pada luas permukaan reaksi gasifikasi dan komposisi H2 dan CO dalam gas sintetis. Penelitian sebelumnya, pirolisis dilakukan tanpa memperhatikan kecepatan pirolisis. Percobaan dilakukan dengan metode steam catalytic gasification yang diarahkan untuk mencapai kondisi optimum untuk menghasilkan yield gas sintesis maksimum dengan rasio mol H2/CO≈2 dengan menggunakan arang batubara dengan luas permukaan yang telah diketahui. Laju pemanasan yang cepat pada tahap pirolisis akan meningkatkan surface area arang, sehingga yield gas akan meningkat. Penelitian ini dilakukan dengan mengumpankan partikel arang batubara lignit Indonesia dan katalis K2CO3 ke dalam reaktor fixed bed dengan variasi rasio steam/char (2,2; 2,9; 4,0), dan suhu gasifikasi (750˚C, 825˚C, dan 900˚C). Rasio H2/CO tertinggi yang didapat dari kondisi suhu 750˚C dan rasio steam/char 2,2 yaitu 1,682. Yield gas terbesar yang didapat dari penelitian ini adalah 0,504 mol/g pada suhu 900˚C dan rasio steam/char 2,9. Kondisi optimum untuk produksi gas sintesis adalah pada suhu 750˚C dan rasio steam/char 2,2 dengan yield 0,353 dan rasio H2/CO 1,682. ......Generally, gasification produces syngas with H2/CO mole ratio <2. Gasification uses steam to improve the composition of H2 in the syngas. Gasification reaction kinetics can be improved by using K2CO3 catalyst. Controlled heating rate determines the pore size of charcoal that affects surface area of gasification reaction and composition of H2 and CO in the syngas. Previous studies, pyrolisis process was performed without regard to pyrolysis rate. Experiments was performed by catalytic steam gasification using charcoal which has known surface area to achieve optimum conditions and produce maximum yield of syngas with mole ratio of H2/CO ≈ 2. Rapid heating rate on pyrolysis stage will increase the surface area of charcoal, so it will increase gas yield. This study was performed by feeding Indonesian charcoal particles and K2CO3 catalyst into fixed bed reactor with variation of ratio of steam/charcoal (2.2; 2.9; 4.0), and gasification temperature (750˚C, 825˚C, and 900˚C). Highest ratio of H2/CO obtained at temperature of 750˚C and steam/charcoal ratio of 2.2 was 1.682. Largest gas yield obtained from this study was 0.504 mol/g at temperature of 900˚C and steam/charcoal ratio of 2.9. The optimum conditions for syngas production was temperature of 750˚C and steam/charcoal ratio of 2.2 with gas yield of 0.353 and H2/CO ratio of 1.682.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35466
UI - Tesis Membership  Universitas Indonesia Library
cover
Muthia Hanun
Abstrak :
Penggunaan plastik pada proses ko-pirolisis trigliserida dapat berguna untuk menyumbangkan hidrogen selama proses ko-pirolisis serta mengurangi limbah plastik. Pada penelitian ini, reaksi ko-pirolisis akan dilakukan di dalam reaktor tangki berpengaduk menggunakan katalis Ni/ZrO2.SO4, yang diharapkan mampu memenuhi karakteristik mesopori dan meningkatkan yield produk hasil. Tujuan penelitian ini adalah untuk mendapatkan pengaruh rasio umpan plastik polipropilena dari 0%, 25%, 50%, 75% dan 100% berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk ko-pirolisis dianalisis berdasarkan yield, analisis FTIR, dan GC-MS, untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil. Penggunaan katalis Ni/ZrO2.SO4 mampu meningkatkan yield ­produk akhir dan mengurangi produksi wax dan gas. Dari hasil ko-pirolisis, peningkatan rasio polipropilena pada umpan dapat mengurangi jumlah senyawa oksigenat dari 75.88% pada variasi 0% PP menjadi 67.17% pada variasi 25% PP, 55.38% pada variasi 50%, dan 44.96% pada variasi 75% PP. Setelah proses pirolisis, reaksi hidrodeoksigenasi dilakukan dalam reaktor tangki berpengaduk dengan dialiri gas hidrogen bertekanan 14 bar. Produk akhir hidrodeoksigenasi menunjukkan bahwa katalis Ni/ZrO2.SO4 tidak menunjukkan efek positif untuk mengurangi komponen oksigenat pada bio-oil­. Hal ini diakibatkan oleh faktor hambatan sterik dan keasaman katalis, sehingga reaksi cenderung mengarah ke esterifikasi. ...... The use of plastic in triglyceride co-pyrolysis were for donating hydrogen during the co-pyrolysis process and reducing plastic waste. In this study, the co-pyrolysis reaction will be carried out in a stirred reactor using a Ni/ZrO2.SO4 catalyst, which is expected to meet mesoporous characteristics and increase product yield. The purpose of this study was to determine the effect of the polypropylene plastic feed ratio of 0%, 25%, 50%, 75% and 100% by weight of the feed on the co-pyrolysis product yield and bio-oil composition. The co-pyrolysis products were analyzed based on yield, FTIR, and GC-MS, to determine possible reaction pathway, compound composition, and chemical bonds in bio-oil. The use of Ni/ZrO2.SO4 catalyst could increase the final product yield and reduce the production of wax and gas. From the results of co-pyrolysis, increasing the ratio of polypropylene in the feed could reduce the amount of oxygenate compounds from 75.88% in the 0% PP variation to 67.17% in the 25% PP variation, 55.38% in the 50% variation, and 44.96 % at 75% PP variation.. After the pyrolysis process, the hydrodeoxygenation reaction was carried out in a stirred tank reactor with hydrogen gas flowing under a pressure of 14 bar. The final product of hydrodeoxygenation showed that the Ni/ZrO2.SO4 catalyst did not show a positive effect on reducing the oxygenate component of the bio-oil. This is caused by the steric hindrance and acidity of the catalyst, so it tends to lead to esterification.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Miranda Meidistira
Abstrak :
Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.
Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imaduddin Haq
Abstrak :
Pembentukan pirolisis yang keberlanjutan (sustainable pyrolysis) adalah kunci dari keberhasilan proses gasifikasi. Zona pirolisis pada proses gasifikasi merupakan akibat reaksi endotermis yang mendapatkan energi panas dari proses oksidasi (combustion) antara bahan bakar dengan oksigen. Perekahan biomassa sekam padi hasil pirolisis yang berupa arang, uap air, uap tar, dan gas - gas (CO, H2, CH4, CO2, dan N2) harus dijaga pada temperatur pirolisis untuk mendapatkan gas hasil (producer gas) atau syngas (synthetic gas) yang berlimpah. Keberhasilan proses gasifikasi diperoleh dengan mendapatkan debit syngas secara kontinyu dan diindikasikan oleh konsistensi nyala api pada gas burner. Hal ini sangat dipengaruhi oleh faktor pengoperasian gasifier dan kesetimbangan massa (mass balance) antara feeding rate sekam padi dengan laju pembuangan abu (ash removal rate). Eksperimental yang dilakukan adalah menggunakan gasifier tipe downdraft fixed bed kapasitas 10 kg/jam dimana sebelum terjadinya modifikasi gasifier pada sistim pembuangan abu sekam padi sangat sulit untuk mendapatkan kontinuitas syngas. Kekurangstabilan laju alir syngas diperkirakan adanya akumulasi abu sisa gasifikasi pada zona combustion dan plenum chamber. Dengan melihat zona pirolisis yang terjadi pada temperatur antara 400 - 800 oC terlihat laju temperatur yang cepat yang mengakibatkan tidak stabilnya proses pirolisis sehingga didapat kurangnya debit syngas. Selain itu, pengaturan (laju) massa sekam padi yang masuk kedalam gasifier dan pengaturan pembuangan abu dapat mempengaruhi sustainability proses pirolisis. Modifikasi sistim pembuangan abu dan angsang (grate) abu dapat mempermudah pengaturan sejumlah massa abu yang dikeluarkan sehingga dapat mengendalikan zona temperatur pirolisis dengan baik. Kajian eksperimental dilakukan untuk mengetahui pengaruh jumlah massa abu sekam padi yang dibuang terhadap sustainability zona pirolisis. Didapat bahwa jumlah abu sekam padi yang dibuang sebesar 60 ? 90 gram per satu kali pembuangan (operasi sistim ash removal) untuk setiap 20 menit atau rata ? rata laju pembuangan abu sekam sebesar 5 gram/menit. Dari beberapa eksperimental ini, diharapkan dapat terlihat fenomena proses gasifikasi sekam padi dan pengaruhnya terhadap zona pirolisis akibat pembuangan sejumlah massa abu sekam padi. Sehingga penelitian ini dapat menemukan suatu korelasi untuk mendapatkan unjuk kerja (performance) gasifier yang optimal. ...... The establishment of sustainable pyrolysis is key to the success of the gasification process. Pyrolysis zone in the gasification process is the result of an endothermic reaction that get hot energy from the oxidation process of the fuel with oxygen. Cracking of rice husk biomass pyrolysis results in the form of charcoal, water vapor, tar vapors, and gases (CO, H2, CH4, CO2, and N2) must be maintained at a pyrolysis temperature to obtain synthetic gas (syngas) with plantyful harvest. Success of the gasification process to obtain syngas continuously and are indicated by the consistency of the flame on a gas burner. It is highly influenced by the operation of the gasifier and the mass balanced beetwen rice husk feeding rate and ash removal rate. The experiment was performed under gasifier downdraft fixed bed type with capacity 10 kg/hour, previously to the modification of the gasifier on rice husk ash removal system is very difficult to obtain syngas. Unstable syngas flow rate is estimated from the accumulation of ash residue gasification process of combustion area and plenum chamber. By looking at the pyrolysis zone occurs at temperatures between 400 ? 800 oC seen rapidly of temperature rate results in insteability of the pyrolysis process in order to get a lack of producer gas. Besides of setting rice husk rate into the gasifier and ash removal rate arrangements affecting sustainable pyrolysis process. Ash removal system modifications can facilitate setting a mass of ash removed so that it can control the pyrolysis temperature zone well. The experimental study was conducted to determine the effect of mass quantities of rice husks ash is removed towards sustainability pyrolysis zone. Founded that the amount of rice husk ash removed are 60-90 grams per one removal for every 20 minutes or an average of rice husk ash removal rate of 5 gr/minutes. Some of this experimental phenomena is expected to be seen rice husks gasification process and its effect on the pyrolysis zone as a results of the removing of a mass of rice husks ash. So that this research can be find a correlation to obtain optimal performance of the gasifier.
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45410
UI - Tesis Membership  Universitas Indonesia Library
cover
Desy Kurniawati
Abstrak :
ABSTRAK
Konversi limbah plastik HDPE menjadi bahan bakar minyak, merupakan langkah konkrit saat ini untuk menghasilkan alternative energi. Pirolisis menjadi salah satu pilihan yang dapat diambil, yang mana selama ini proses pirolisis masih dikenal sebagai proses konversi dengan kebutuhan energi yang cukup tinggi. Oleh karena hal tersebut tujuan dari penelitian ini adalah dengan mengembangkan metode pirolisis baik thermal pyrolysis dan catalytic pyrolysis berbasis pendinginan passive cooling system pada kedua metode tersebut yang rendah energi untuk menghasilkan minyak bahan bakar dengan sifat mendekati karakteristik minyak diesel. Pada catalytic pyrolysis, digunakan katalis yang berasal dari limbah PLTU yaitu abu terbang Amurang, Bukit Asam, Adaro dan Kideco. Dari keempat jenis tersebut hanya dua abu terbang yang memenuhi syarat untuk dijadikan bahan katalis ZSM5 berdasar nilai ambang batas rasio Si/Al yang dikandung dari uji SEM-EDS, yaitu dari keduannya masing-masing sebesar 21,95 dan 10,02. Hasil dari uji BET dihasilkan karakteristik ZSM5 yang memenuhi yaitu luas permukaan abu terbang Amurang dan Bukit Asam masing-masing adalah 9,11 m2/g dan 21,25 m2/g. Volume pori-pori 0,02 ml/g dan 0,03 ml/g, dan ukuran pori masing-masing 40,12 Å dan 25,93 Å. Kondisi operasi pyrolysis optimal pada suhu reaktor 500oC dengan specific energy consumption sebesar 44,35 watt/gram, dengan laju kalor 14497,85 KJ/h, dengan suhu air pendingin LCS 20oC dan dengan ukuran feed reaktor bekisar 2mm - < 20 mm. Pada thermal pyrolysis dihasilkan konversi fase cair 89%, dengan tanpa endapan dan 11% gas. Sedangkan untuk catalytic pyrolysis perlu penambahan katalis di bagian reaktor sebesar 30% dari jumlah katalis, dengan peletakan 70% katalis di ruang katalis pada saluran uap sebelum LCS, dan dihasilkan konversi sebesar 85% cairan. Karakteristik hasil densitas dan viscositas kinematis dari thermal pyrolysis adalah 0,830 gram/ml dan 2,045 mm2/s (pada suhu uji 40oC), sedangkan hasil densitas dan viscositas kinematis dari catalytic pyrolysis adalah 0,827gram/ml dan 1,799 mm2/s (pada suhu uji 20oC).
ABSTRACT
The conversion of HDPE waste into fuel oil is concrete step to produce alternative energy. Pyrolysis is one of the choices that can be taken, which during this time the pyrolysis process still known as a conversion process with high energy requirements. Therefore, the aim of this research is to develop a pyrolysis method for both thermal pyrolysis and catalytic pyrolysis based on passive cooling system-based cooling in both low energy methods to produce fuel oil with properties as characteristics of diesel oil. In catalytic pyrolysis, catalysts derived from PLTU waste are used, namely Amurang, Bukit Asam, Adaro and Kideco fly ash. From the four types coal fly ash, only two fly ashes were qualified to be used as ZSM5 catalysts based on value of the Si/Al ratio contained from the SEM-EDS test, with the amount respectively are 21.95 and 10.02. The results of the BET test produced ZSM5 characteristics with the surface area of ​​Amurang and Bukit Asam fly ash, respectively are 9.11 m2/g and 21.25 m2/g. The pore volume is 0.02 ml/g and 0.03 ml/g, and the pore size is 40.12 Å and 25.93 Å. Pyrolysis operating conditions are optimal at reactor temperatures of 500oC with specific energy consumption 44.35 watt/gram, with heat transfer rate about 14497,85 KJ/h with cooling water temperature of 20oC for LCS, with reactor feed sizes ranging from 2mm - <20mm. In thermal pyrolysis produced 89% liquid phase conversion, with no deposits and 11% gas. Whereas for catalytic pyrolysis it is necessary to add catalyst in the reactor by 30% of the amount of catalyst, by placing 70% catalyst in the catalyst chamber in the steam channel before LCS and resulting in a conversion of 85% liquid. The characteristics of the kinematic density and viscosity results of thermal pyrolysis are 0.830 gram/ml and 2.045 mm2/s (at a test temperature of 40oC), while the kinematic density and viscosity results of catalytic pyrolysis are 0.827gram/ml and 1.799 mm2/s (at a test temperature of 20oC), while the kinematic density and viscosity results of catalytic pyrolysis are 0.827gram/ml and 1.799 mm2/s (at a test temperature of 20oC).
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>