Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Heraldus Panji Arikson
Abstrak :
Gangguan satu fasa ke tanah terjadi pada kabel bawah laut yang menghubungkan Pabelokan ke Nora. Gangguan ini seharusnya dapat segera diatasi oleh rele arus lebih pada penyulang Pabl – Nora dalam waktu 0,593 sekon. Akan tetapi, hal itu justru tidak terjadi dan malah menyebabkan seluruh area selatan, beberapa daerah area utara juga tengah mengalami pemadaman. Dalam skripsi ini, akan disimulasikan tiga kondisi arus gangguan yang berbeda – beda yaitu 397 A, 795 A dan 1,19 kA yang berasal dari kombinasi kontribusi arus gangguan oleh tiga generator yang bekerja. Ketidakseimbangan tegangan terjadi selama gangguan sehingga menyebabkan surge arrester pada G101B pecah. Kontribusi arus gangguan pun turun menjadi 397 A karena G101C memang tidak diaktifkan untuk bekerja. Nilai arus gangguan yang kecil ini membuat waktu tunda rele arus lebih IAC-53 pada feeder Pabelokan Nora beroperasi setelah 25 sekon. Nilai ini lebih lama daripada waktu yang dibutuhkan oleh rele SR489 untuk bekerja dengan nilai arus gangguan yang sama yaitu 8,31 sekon. Hal ini menyebabkan generator G101A lebih dahulu mengalami trip karena ground fault rele. Oleh karena itu, pengaturan nilai pick up arus gangguan dan waktu kerja rele pun harus diatur lebih cepat lagi yaitu pada kisaran 5 sekon untuk nilai arus yang sama agar kejadian serupa tidak terulang lagi. ...... Phase to ground fault happened to the subsea cable that connected Pabelokan to Nora. This fault should be cleared by Over c urrent relay at Pabl- Nora feeder in 0,593 second. Nevertheless, it didn’t work that way instead it caused all the south area and some of central and north area was shutdown. There will be three conditions of fault current that will be simulated on this simulation which are 397 A, 795 A and 1,19 kA that is coming from the combination of three generators that worked. The unbalanced voltage that happened when fault is inserted caused surge arrester in G101B blown up. The current fault decreased and it was 397 A because G101C was not work from the first, due to repairement. The fault current value that is so small caused delay in IAC-53 reay at Pabl-Nora feeder. This rele worked after 25 seconds. This value is longer than the time that SR489 relay needed to work at the exactly same fault current that is 8,31 seconds. It is caused generator G101A tripped by ground fault relay. As the solution, pick up current and time delay setting must be set faster that is about 5 seconds for the same value of current fault so this kind of things is not going to happened again.
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56682
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abstrak :
Offshore operation facilities : equipment and procedures provides new engineers with the knowledge and methods that will assist them in maximizing efficiency while minimizing cost and helps them prepare for the many operational variables involved in offshore operations. This book clearly presents the working knowledge of subsea operations and demonstrates how to optimize operations offshore. The first half of the book covers the fundamental principles governing offshore engineering structural design, as well as drilling operations, procedures, and equipment. The second part includes common challenges of deep water oil and gas engineering as well as beach (shallow) oil engineering, submarine pipeline engineering, cable engineering, and safety system engineering. Many examples are included from various offshore locations, with special focus on offshore China operations. In the offshore petroleum engineering industry, the ability to maintain a profitable business depends on the efficiency and reliability of the structure, the equipment, and the engineer.
Waltham, MA: Gulf Professional, 2014
e20427598
eBooks  Universitas Indonesia Library
cover
I Made Adi Wardana
Abstrak :
[ABSTRAK
Pengembangan lapangan gas laut dalam memiliki tantangan teknis, terkait fasilitas produksi dan teknologi untuk dapat memproduksikan migas pada kondisi lingkungan yang ekstrem. Disamping itu, biaya yang diperlukan lebih besar dibandingkan pengembangan lapangan laut dangkal. Dalam penelitian ini dilakukan analisa secara teknis dan ekonomis terhadap pengembangan lapangan gas laut dalam di Selat Makasar dengan metode subsea tieback, dengan memanfaatkan kapasitas tersedia dari floating production unit (FPU) yang sudah ada. Analisa teknis meliputi penentuan ukuran pipa (flowline) optimal, yang dapat memenuhi target deliverabilitas gas, memenuhi kriteria teknis lainnya, serta analisa flow assurance, khususnya mitigasi hidrat untuk menjamin keberlangsungan aliran fluida dari sumur bawah laut hingga ke titik jual. Dari analisa teknis akan didapatkan beberapa konfigurasi ukuran pipa dan mitigasi hidrat. Analisa ekonomi meliputi perhitungan biaya investasi untuk setiap opsi yang memenuhi kriteria teknis, kemudian dilanjutkan penghitungan parameter keekonomian berdasarkan aturan Production Sharing Contract (PSC) yang berlaku di Indonesia. Dengan harga gas 6 US$/mmbtu, didapatkan nilai Government Take (GT) 609 juta US$ dan Internal rate of Return (IRR) 15.13%. Sensitivitas analisis dilakukan dengan variasi harga jual gas dan mengubah besaran kontraktor split untuk meningkatkan IRR sehingga dapat mencapai nilai yang masih dapat diterima dari sisi Kontraktor. Untuk mendapatkan IRR yang lebih besar dari 20%, diperlukan kontraktor split sebesar 48%. Hasil analisa keekonomian dapat menjadi pertimbangan dalam penentuan besaran kontraktor split untuk pengembangan lapangan gas laut dalam.
ABSTRACT
Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development.;Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development., Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development.]
2015
T44510
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Abstrak :
Methods in Chemical Process Safety, Volume Two, the latest release in a serial that publishes fully commissioned methods papers across the field of process safety, risk assessment, and management and loss prevention, aims to provide informative, visual and current content that appeals to both researchers and practitioners in process safety. This new release contains unique chapters on offshore safety, offshore platform safety, human factors in offshore operation, marine safety, safety during well drilling and operation, safety during processing (top side), safety during transportation of natural resources (offshore pipeline), and regulatory contextHelps acquaint the reader/researcher with the fundamentals of process safetyProvides the most recent advancements and contributions on the topic from a practical point-of-viewPresents users with the views/opinions of experts in each topicIncludes a selection of the author(s) of each chapter from among the leading researchers and/or practitioners for each given topic
Cambridge: Elsevier, 2018
622.293 MET
Buku Teks  Universitas Indonesia Library
cover
Bai, Yong
Abstrak :
In most subsea developments, oil and gas productions are transported from subsea well to platform in multiphase flow without separation process. Corrosion represents increasing challenges for the operation of subsea pipelines. Corrosion can be defined as a deterioration of a metal, due to chemical or electrochemical between the metal and its environment. The tendency of a metal to corrode depends on a given environment and the metal type
Amsterdam: Elsevier, 2014
621.8 BAI s
Buku Teks  Universitas Indonesia Library
cover
Abstrak :
Offshore safety management, second edition provides an experienced engineer's perspective on the new Safety and environmental system (SEMS) regulations for offshore oil and gas drilling, how they compare to prior regulations, and how to implement the new standards seamlessly and efficiently. The second edition is greatly expanded, with increased coverage of technical areas such as engineering standards and drilling, and procedural areas such as safety cases and formal safety assessments. The new material both complements the SEMS coverage and increases the book's relevance to a global audience. Following the explosion, fire, and sinking of the Deepwater Horizon floating drilling rig in April 2010, the Bureau of Ocean Energy Management, Regulations, and Enforcement (BOEMRE) issued many new regulations. One of them was the Safety and Environmental System rule, which is based on the American Petroleum Institute's SEMP recommended practice, finalized in April 2013. Author Ian Sutton explains the SEMS rule, and describes what must be done to achieve compliance. Each of the twelve elements of the SEMS rule (such as Management of change and safe work practices) is described in the book, and guidance is provided on how to meet BOEMRE requirements.
Waltham, MA: William Andrew, 2014
e20427596
eBooks  Universitas Indonesia Library