Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Roy Candra Primarsa
Abstrak :
ABSTRAK
Suatu Badan Pengawas Pemanfaatan Tenaga Nuklir di Indonesia menilai tingkat keselamatan nuklir fasilitas radiasi melalui Indeks Keselamatan dan Keamanan Nuklir (IKKN). Ragam temuan inspeksi merupakan faktor penyebab penurunan performa keselamatan fasilitas dan probabilitas kegagalan IKKN dijadikan sebagai Top Event penelitian ini. Renstra Badan Pengawas 2015-2019, menyebutkan target keberhasilan nilai IKKN 2017-2019 pada rentang nilai 75-82 (skala 100). Dari data mentah hasil inspeksi pada sistem online inspeksi Balis Infara, dilakukan pengolahan data dengan menghitung nilai probabilitas masing-masing dari kriteria inspeksi, kategori temuan, dan butir temuan. Nilai probabilitas ini kemudian di analisis melalui Metode Fault Tree Analysis (FTA) tujuan untuk mendapatkan nilai top event probabilitas kegagalan IKKN hasil inspeksi 2017-2019. Hasil Fault Tree Analysis (FTA) yang didapatkan adalah probilitas kegagalan IKKN adalah 0,128 (12.8 dari 100) dengan kata lain berarti nilai keberhasilan IKKN tersebut adalah 0,872 (87.2 dari 100). Hasil ini masih sesuai dengan nilai IKKN dalam Renstra 2017-2019, Optimasi keselamatan nuklir dapat diimplementasikan dengan peningkatan sistem Inspeksi.
ABSTRACT
The Nuclear Energy Regulatory Body in  Indonesia assesses the nuclear safety level of radiation facilities through the Nuclear Safety and Security Index (IKKN). The various findings of inspection the factors causing decreased of safety performance of facility and the probability failure of the IKKN as the Top Event of this study. Regulatory  Body Strategic Plan 2015-2019, stated IKKN value 2017-2019 in the range of 75-82 (scale 100). From the raw data of the inspection results in the Balis Infara online inspection system, data processing is performed by calculating the probability value of each of the inspection criteria, category of findings, and items found. This probability value is then analyzed through the Fault Tree Analysis (FTA) method in order to get the top even is the probability failure of IKKN results from inspection 2017-2019. The result of the Fault Tree Analysis (FTA) that the probability failure of the IKKN is 0.128 (12.8 out of 100) in other words means the success value of the IKKN is 0.872 (87.2 out of 100). These results are still appropriate with the IKKN values in the 2017-2019 Regulatory Body Strategic Plan, The optimization of nuclear safety can be implemented with improvement of the Inspection system.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Hadi Kusuma
Abstrak :
Fenomena rewetting pada celah sempit persegi selama proses quenching berhubungan dengan manajemen termal ketika terjadinya suatu kecelakaan nuklir, baik kecelakaan karena kehilangan air pendingin maupun kecelakaan lain yang mengakibatkan lelehnya teras reaktor nuklir. Untuk itu perlu dilakukan penelitian tentang hal tersebut di atas agar didapatkan pemahaman yang benar tentang keselamatan reaktor nuklir dari sisi pendinginan khususnya fenomena rewetting di celah sempit persegi selama proses quenching dan juga dapat berguna bagi perbaikan desain reaktor generasi selanjutnya. Penelitian difokuskan pada penentuan suhu, waktu, dan kecepatan rewetting di celah sempit persegi berukuran 1 mm dengan 3 variasi suhu awal pelat persegi dan 3 variasi laju aliran air pendingin. Eksperimen dilakukan dengan menginjeksikan air pada laju aliran 0,1-0,3 liter/detik pada suhu air pendingin 85oC. Data transien suhu hasil pengukuran direkam melalui sistem akuisisi data. Data tersebut digunakan untuk mengetahui suhu transien pendinginan celah sempit persegi dan menentukan suhu, waktu, dan kecepatan rewetting dari proses quenching tersebut. Penelitian ini bertujuan untuk memperoleh data eksperimen perubahan suhu dinding pelat panas selama proses quenching pada celah sempit persegi, memahami fenomena rewetting pada proses quenching pada celah sempit persegi, dan mempelajari pengaruh suhu awal pelat panas dan laju alir air pendingin terhadap rewetting. Hasil yang diperoleh menunjukkan bahwa pada suhu 205°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 201,38-205°C, waktu rewetting terjadi pada 0 detik dan kecepatan rerata rewetting pada 0 meter/detik. Pada suhu 400°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 358,66-387,5°C, waktu rewetting terjadi pada 2,73-44,48 detik, dan kecepatan rewetting pada 0,0094-0,1037 meter/detik. Pada suhu 600°C dengan debit aliran 0,1-0,3 liter/detik, suhu rewetting terletak pada rentang 426,63-480,55°C, waktu rewetting terjadi pada 34,77-88,23 detik, dan kecepatan rerata rewetting pada 0,0025-0,0072 meter/detik. Dari penelitian ini menunjukkan suhu terjadinya rewetting akan meningkat seiring dengan kenaikan suhu permukaan pelat panas persegi. Pada suhu permukaan pelat panas persegi yang sama, semakin besar debit aliran air pendingin yang dilewatkan melalui celah sempit maka waktu dan kecepatan rewetting yang dibutuhkan untuk mendinginkan permukaan pelat persegi tersebut akan semakin cepat. Meningkatnya suhu pelat panas persegi bagian tengah pada suatu debit aliran yang sama akan menyebabkan semakin lamanya waktu yang dibutuhkan oleh air pendingin untuk melakukan rewetting. Dapat diperkirakan bahwa gelembung uap yang terbentuk akibat pemanasan pelat persegi tersebut bergerak ke atas dan mengakibatkan terjadinya counter current yang menghambat laju aliran air pendingin untuk melakukan pendinginan celah sempit persegi.
Rewetting phenomena on a rectangular narrow gap during quenching process is related to thermal management when the occurrence of a nuclear accident due to loss of coolant accident or other kind of accidents resulting in core melted. In order to address the problem, it is crucial to conduct research to get a better understanding of nuclear safety reactor regarding to cooling especially in rewetting phenomena in a rectangular narrow gap during quenching process. The influence of the initial temperature of the hot plate and cooling water flow rate of rewetting was also observed. The study focused on determining the temperature, time, and velocity of rewetting in 1 mm narrow gap with 3 variations of the initial temperature of hot plates and 3 variations of the cooling water flow rate. Experiments were carried out by injecting water into the hot plate whose temperature ranging from 205 to 600°C at a flow rate 0.1-0.3 liters/sec to 85°C cooling water temperature. Data of transient temperature measurements were recorded using a data acquisition system in order to record the temperature, time, and velocity of rewetting during the quenching process. This study aims to understand the phenomenon of rewetting during the quenching process and to study the influence of the initial temperature of the hot plate and cooling water flow rate of rewetting on a rectangular narrow gap. The results shows that at 205°C with a flow rate 0.1-0.3 l/s, rewetting temperature range 201.38 - 205°C, rewetting time occurred at 0 second, and average rewetting velocity is 0 m/s. At 400°C with flow rates 0 - 0.3 l/s, rewetting temperature is 358.66 ? 387.5°C, the rewetting time is 2.73 ? 44.48 seconds, and average rewetting velocity is 0.0094 - 0.1037 m/s. At 600°C with flow rates from 0.1- 0.3 l/s, rewetting temperature range from 426.63 to 480.55°C, the rewetting time from 34.77 ? 88.23 seconds, and the average rewetting velocity from 0.0025 -0.0072 m/s. The results indicates that rewetting temperature will increase with rising temperature of rectangular hot plate. At the same temperature of hot plate, the greater flow rate of cooling water passed through a rectangular narrow gap the faster the resulted time and velocity of rewetting will be. Increasing the temperature of the hot plate on the center plate in a similar flow rate will cause the length of time required by the cooling water for rewetting. It is estimated that the amount of gas formed by heating a rectangular plate moved up and resulted a counter current that inhibits the cooling water flow rate in the cooling of rectangular hot plate.
Depok: Universitas Indonesia, 2012
T30394
UI - Tesis Open  Universitas Indonesia Library