Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
"Curah hujan merupakan unsur iklim yang penting bagi perencanaan irigasi maupun bagi kehidupan di bumi , jumlah curan hujan menunjukan tinggi air hujan yang menutupi permukaan jika air tersebut tidak meresap kedalam tanah atau menguap ke atmosfir, daerah lakbok adalah daerah yang secara rutin selalu dilanda banjir dengan areal yang cukup luas. Analisa curah hujan wilayah menggunakan metode Polygon Thiesen, sedangkan untuk curah hujan rencana menggunakan analisa kemungkinan secara statistik yang dipengaruhi oleh karakteristik hujan yang terjadi pada daerah yang ditinjau yaitu dengan metode Gumbel Distribusi , Log normal distribusi dan log pearson type III distribusi. Curah hujan di DAS Ciseel (Lakbok) dengan kala ulang 2 tahun untuk ketiga metode memiliki nilai yang hampir sama, tetapi untuk kala ulang (5,10,15,25,50 dan 100 tahun) curah hujan dengan metode Gumbel ditribusi ternyata lebih besar dibandingkan dengan log normal distribusi maupun Log pearson tpe III Distribusi."
507 JPS 3:2 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
"Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning, to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. "
Heidelberg : Springer, 2012
e20420471
eBooks  Universitas Indonesia Library
cover
Darien Jonathan
"ABSTRAK
Distribusi normal adalah salah satu jenis persebaran kelompok data yang didefinisikan berdasarkan rata-rata dan standar deviasi dari sekelompok data, yang dapat digunakan untuk mengelompokkan data berdasarkan posisinya terhadap standar deviasi dari kelompok data tersebut. Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang ia terima kemudian memberi keluaran sesuai dengan masukan tersebut, dengan metode supervised dan competitive learning. Skripsi ini membahas penerapan dan analisis dari kedua sistem tersebut untuk menguji hasil deteksi plagiarisme oleh sistem deteksi plagiarisme berbasis latent semantic analysis, yang berasal dari program Simple-O. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter dari metode distribusi normal, yakni dengan mengubah batas standar deviasi maupun dengan mengubah koefisien pengali batas nilai pada standar deviasi tertentu, dimana hasilnya adalah standar deviasi maupun koefisien pengalinya berbanding lurus dengan aspek relevansi program (recall) namun tidak pada akurasi (F-Measure). Modifikasi juga dilakukan pada parameter percepatan belajar dari algoritma learning vector quantization, dimana hasilnya adalah parameter percepatan belajar berbanding terbalik dengan relevansi program maupun akurasi. Kemudian variasi dan analisis dilakukan pada tujuh jenis besaran hasil keluaran sistem deteksi plagiarisme berbasis latent semantic analysis, yakni frobenius norm, slice, dan pad, beserta kombinasinya, dimana hasilnya keberadaan frobenius norm diwajibkan untuk melakukan evaluasi kemiripan antara dua teks. Kemudian hasil pengujian menggunakan kedua metode digabungkan menggunakan operasi AND yang memberikan hasil yang beragam, dengan catatan perlunya keseimbangan antara precision dan recall dari masing pengujian yang akan dilakukan operasi AND untuk memberikan hasil yang baik. Dengan menggunakan kombinasi metode dan parameter yang tepat, terdapat peningkatan akurasi sistem dari 35-46% pada penelitian sebelumnya hingga maksimal 65,98%.

ABSTRACT
Normal distribution is a type of data distributions which is defined from the average and standard deviation of the data cluster. It can be used to group datas based on its position from the standard deviation of the data cluster. Learning vector quantization is a type of neural networks that can learn from inputs it gets to give appropriate outputs, with supervised and competitive learning methods. This thesis discusses the implementation and analysis of both methods to verify the plagiarism detection results from detection plagiarism system based on latent semantic analysis, which is based on Simple-O program. Some modifications are made, such as by variating the parameters of normal distribution method, by changing the limits of standard deviation or by changing the factor of the number limit at a particular standard deviation. Both of them appear to be directly proportional to the relevance (recall), but not with accuracy (F-Measure). Modifications are also made at the learning acceleration parameters from the learning vector quantization algorithm, which sees the parameters being inversely proportional to both the relevance and accuracy. Then, variations and analysis are done to seven types of magnitude from the results of the plagiarism detection system, which are frobenius norm, slice, and pad, and their combinations, which suggest that frobenius norm is the most verifiable results, and must be included to be evaluated when text similarity analysis are conducted. Then, verification results using both methods are combined using AND operation which gives diverse results. However, it is needed to have a balance between precision and recall from each verifications to produce good results. With correct combinations of methods and parameters, system accuracy are increased from 35-46% of last research to maximum accuracy of 65,98%.
"
Fakultas Teknik Universitas Indonesia, 2016
S62578
UI - Skripsi Membership  Universitas Indonesia Library