Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Dian Maharani
"Jika biaya kerugian yang disebabkan peristiwa kebakaran dapat diprediksi dengan big-structured data mengenai faktor-faktor penyebab kebakaran yang sudah ada maka penentuan polis asuransi kebakaran di perusahaan asuransi menjadi lebih efektif dan efisien. Pada tesis ini, model Deep Neural Network (DNN) digunakan untuk memprediksi biaya kerugian akibat kebakaran untuk polis asuransi, kemudian membandingkan akurasi model DNN dan NN. Dari hasil penelitian didapatkan bahwa akurasi (MSE) model DNN optimal sebesar 0,04217331959 ±0,63924424e-15, sedangkan akurasi (MSE) model NN yang optimal sebesar 0,04217335183±  0,64079999e-15. Hal tersebut menunjukan bahwa model DNN sebanding dengan model NN dalam memprediksi biaya kerugian pada asuransi kebakaran dengan data yang digunakan merupakan big-structured data. Selain itu, running time program untuk model NN lebih cepat dibandingkan dengan model DNN.

If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53940
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Adi Nugroho
"Pengolahan citra telah mengalami banyak perkembangan dan semakin umum diaplikasikan. Salah satu pengaplikasiannya rekognisi wajah tiga dimensi, yang juga melibatkan estimasi pose wajah. Salah satu metode rekognisi citra, yaitu jaringan saraf konvolusi, berpotensi menjadi dasar dari sistem estimasi pose wajah. Operasi konvolusi diharapkan mampu meminimalisir pengaruh distorsi dan disorientasi objek, serta mampu mengefisiensikan parameter yang dibutuhkan. Namun, permasalahan noise atau derau belum secara eksplisit terselesaikan oleh jaringan saraf tiruan konvolusi.
Penelitian ini bertujuan memasukkan fitur sistem fuzzy yang efektif mengelola data samar ke dalam jaringan saraf tiruan konvolusi yang diaplikasikan untuk estimasi pose wajah. Perancangan dimulai dari menjabarkan fungsi masing-masing lapisan jaringan saraf tiruan, menjabarkan operasi-operasi aritmatika pada bilangan fuzzy, dan mencoba menggantikan neuron crisp pada jaringan saraf tiruan konvolusi umum menjadi neuron fuzzy, dan mengaplikasikannya untuk mengestimasi pose wajah. Sistem yang sudah dibangun kemudian diujicoba pada dataset yang dimiliki Departemen Teknik Elektro UI dan dibandingkan dengan CNN-crisp yang memiliki arsitektur serupa dengan parameter pembelajaran yang sama.
Hasil didapat menunjukkan sistem konvolusi fuzzy mencapai nilai kesalahan estimasi pose lebih rendah dari konvolusi crisp pada data berderau tanpa merubah hasil estimasi pada data tidak berderau.

Image processing has undergone many developments and is increasingly commonly applied. From limited two-dimensional recogniton, facial recognition has now being developed to be able to recognise three-dimensional features. This ability involves process of face pose estimation. One method of image recognition, the convolution neural network, has the potential to become the basis of the face pose estimation system. Convolution operation is expected to minimize the effect of distortion and disorientation of the object, and able to efficiently reduce the required parameters. However, the image noise problem has not been explicitly resolved by convolution neural networks.
This study aims to include features of a fuzzy system that effectively manages fuzzy data into convolutional neural networks applied to head pose estimation. The design begins with describing the function of each layer of artificial neural networks, describing arithmetic operations on fuzzy numbers, and attempting to replace crisp neurons in convolution layer of convolutional neural into fuzzy neurons, and applying them to estimate head poses. The estimator system is then tested on a dataset owned by the Department of Electrical Engineering UI and compared with CNN-crisp that has a similar architecture with the same learning parameters.
The results show that the fuzzy convolution system reaches less error of pose estimation value compared to the crisp convolution system, without changing the estimation value of image without noises.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49040
UI - Tesis Membership  Universitas Indonesia Library