Herno Permana
Abstrak :
Pada tesis ini dibahas mengenai pengendalian sistem multivariabel kolom fraksinator dengan tiga pasangan masukan dan keluaran dengan pengendali Instantaneous Linierization berbasis Neural Network. Tiga masukan pada sistem yaitu top draw (U1 ), side draw (U2), bottoms reflex (U3) dan tiga keluarannya yaitu top end point (Yl), side end point (Y2), bottoms reflux (Y3). Pemodelan sistem kolom fraksinator mengacu pada tabel model heavy oil fractionator yang diambil dari Nett dan Garcia [Pret'88]. Setiap masukan pada sistem mempengaruhi ketiga keluarannya. Interaksi yang terjadi pada sistem dapat diperkecil dengan perancangan dekopling. Simulasi sistem pengendalian dengan pengendali instantaneous linieriration akan dibandingkan dengan pengendali proportional integrator (PI) menggunakan Matlab Versi 6.1 dengan Toolbox Neural Network yang dikembangkan oleh Magnus Noorgard dan Technical University of Denmark. Sistem yang telah dikendalikan diberi gangguan berupa perubahan dinamik dari intermediate reflux duty (IRD), upper reflex duty (URD) dan gangguan random yang bertujuan untuk melihat kemampuan pengendali terhadap gangguan-gangguan tersebut. Dan hasil pengujian, pengendali instantaneous linierization mempunyai settling time, peak time, rise time lebih cepat dibandingkan dengan pengendali PI.
This thesis discusses the control of multivariable fractionators column with three pairs of input and output using Instantaneous Linierization controller based on Neural Network The input systems are top draw (U1), side draw (U2), and bottoms reflux duty (U3). The output systems are top end point (Y1), side end point (Y2), and bottoms reflux temperature (Y3). The model system fractionators column related to table model heavy oil fractionators which taken from Prett and Garcia [Pret'88]. Every system inputs are influencing outputs one another. The interactions can be minimized by decoupling scheme. The simulation of control system with instantaneous. linierization controller will be compared to proportional integral (PI), using Matlab Version 6.1 with neural network toolbox that was developed by Magnus Noorgard from Technical University of Denmark. The controlled system will be given a dynamic change disturbance form intermediate reflux duty (IRD), upper reflux duty (URD), and random disturbance. The aim is to test the controller behavior to handle the disturbances. The result shows that the instantaneous linierization controller has shown faster settling time, faster peak time, faster rise time than that of the PI controller.
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14604
UI - Tesis Membership Universitas Indonesia Library