Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Dyla Velia
Abstrak :
Diabetes mellitus merupakan salah satu penyakit tidak menular dengan angka kematian tertinggi di dunia. Hal ini terjadi karena tingginya resiko komplikasi yang disebabkan pernyakit tersebut. Salah satu cara pencegahan yang dapat dilakukan adalah dengan melakukan pendeteksian lebih awal, salah satunya dengan menggunakan metode iridologi. Metode ini dapat mendeteksi kerusakan organ tubuh melalui tanda-tanda yang muncul pada iris. Dengan menggunakan metode tersebut penelitian ini dilakukan untuk mengklasifikasi penyakit diabetes menggunakan Convolutional Neural Network. Sistem ini mengevaluasi sebanyak 35 subjek normal dan 14 subjek diabetes. Adapun beberapa tahapan yang dilakukan untuk mengelola citra, di antaranya filtering, grayscaling, normalisasi, segmentasi, dan klasifikasi. Selain itu, sistem ini juga melakukan berbagai variasi untuk memperoleh konfigurasi terbaik, seperti variasi citra segmentasi dan tanpa segmentasi, variasi lebar iris, variasi bagian-bagian pankreas, variasi jumlah k-fold, dan variasi algoritma pengoptimalan menggunakan SGDM, Adam dan RMSProp. Sistem ini memperoleh akurasi sebesar 96,43% dengan variasi citra tanpa segmentasi berukuran  piksel menggunakan algoritma Adam dengan learning rate 0,001.
Diabetes mellitus is one of the uncontagious diseases with the highest mortality rate in the world. This happens because of the high risk of complications caused by this disease. One of the preventative ways is to do early detection, one of which is by using the iridology method. This method detects damage to the body's organs through the signs that appear on the iris. Using that method, this study was conducted to classify diabetes using Convolutional Neural Network. This system evaluates 35 normal subjects and 14 diabetes subjects. Several steps are taken to process the image, such as filtering, grayscaling, normalization, segmentation, and classification. Other than that, this system also performs various variations to obtain the best configuration, such as variations in image segmentation and without segmentation, variations in iris width, variations in parts of the pancreas, variations in the number of k-fold, and variations in optimization algorithms using SGDM, Adam and RMSProp. This system obtained an accuracy of 96.43% with variations image without segmentation size pixel using Adam's algorithm with a learning rate of 0.001.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Galangkangin Gotera
Abstrak :
Singlish adalah sebuah bahasa informal yang sering digunakan warga Singapura. Karena informal, bahasa Singlish jarang ditemukan di media umum seperti majalah, koran, dan artikel internet. Meski demikian, bahasa ini sangat sering digunakan oleh warga Singapu- ra pada percakapan sehari-hari, baik daring maupun luring. Banyak campuran bahasa lain (code-mixing) merupakan tantangan lain dari Singlish. Keterbatasan GPU juga menjadi tantangan dalam mendapatkan model yang baik. Mempertimbangkan semua tantangan ini, penulis telah melatih sebuah model Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA) pada data berbahasa Singlish. ELECTRA merupakan sebuah model baru yang menawarkan waktu training lebih cepat sehingga menjadi pilihan baik jika memiliki keterbatasan GPU. Data Singlish didapatkan melalui web scraping pada reddit dan hardwarezone. Penulis membuat sebuah dataset benchmark pada dua buah permasalahan yaitu sentiment analysis dan singlish identification dengan anotasi manual sebagai metode untuk mengukur kemampuan model dalam Singlish. Penulis melakukan benchmarking pada model yang dilatih dengan beberapa model yang tersedia secara terbuka dan menemukan bahwa model ELECTRA yang dilatih memiliki perbedaan akurasi paling besar 2% dari model SINGBERT yang dilatih lebih lama dengan data yang lebih banyak. ......Singlish is an informal language frequently used by citizens of Singapore (Singaporeans). Due to the informal nature, Singlish is rarely found on mainstream media such as magazines, news paper, or internet articles. However, the language is commonly used on daily conversation, whether it be online or offline. The frequent code-mixing occuring in the language is another tough challenge of Singlish. Considering all of these challenges, we trained an Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA) model on a Singlish corpus. Getting Singlish data is hard, so we have built our own Singlish data for pre-training and fine-tuning by web scraping reddit and hardwarezone. We also created a human-annotated Singlish benchmarking dataset of two downstream tasks, sentiment analysis and singlish identification. We tested our models on these benchmarks and found out that the accuracy of our ELECTRA model which is trained for a short time differ at most 2% from SINGBERT, an open source pre-trained model on Singlish which is trained with much more data.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library