Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Muhammad Ashari
Abstrak :
[ABSTRAK
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.
ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise., This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise.]
2015
T44464
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Tirtasari
Abstrak :
Penelitian ini menggunakan data seismik 3 dimensi dan 5 data sumur dari lapangan w. Target penelitian yaitu batuan karbonat pada formasi Tuban di cekungan Jawa Timur Utara. Penelitian bertujuan menentukan distribusi porositas karbonat, dengan menggunakan neural network berdasarkan inversi dan atribut seismik. Inversi seismik model based dan linier programming sparse spike, menghasilkan impedansi akustik pada lapisan di bawah horizon Top Carbonate hingga horizon Base Carbonate, mengalami peningkatan signifikan pada rentang 38076 - 46857 ((ft/s)*(g/cc)). Atribut seismik sweetness, rms amplitude, dan reflection intensity, digunakan sebagai atribut eksternal, untuk tahap multiatribut linier regresi dan neural network. Multiatribut linier regresi dan neural network dilakukan untuk memprediksi porositas bedasarkan atribut-atribut internal maupun eksternal. Hasil analisis multiatribut yang diaplikasikan pada data raw seismik dan 5 volum atribut eksternal, yaitu log porositas prediksi, memiliki nilai korelasi sebesar 0.712 terhadap log porositas. Dan, nilai validasinya sebesar 0.573. Sedangkan, Probabilistic Neural Network menghasilkan porositas prediksi dengan nilai korelasi sebesar 0.661 dan nilai validasinya sebesar 0.485. Berdasarkan multiatribut linier regresi maupun probabilistic neural network, porositas rata-rata pada lapisan reservoar karbonat sebesar 10-15% di bagian utara. Sedangkan, di bagian selatan, porositas rata-rata hanya di bawah 6%.
This study uses three-dimensional seismic data and 5 well data from w field. The research target is carbonate rocks of the Tuban formation in North East Java basin. The study aims to determine the distribution of porosity carbonate, by using neural network algorithm, based on acoustic impedance inversion and seismic attributes. Models based inversion and linear programming sparse spike inversion result in acoustic impedance, in the layers below the horizon Top Carbonate to horizon Base Carbonate, experienced a significant increase impedance in the range 38076-46857 ((ft/s)*(g/cc)). Some seismic attribute; sweetness, rms amplitude, and reflection intensity, are used as external attributes for multi attribute linear regression and neural network. Multi attribute linear regression and neural network is done to predict porosity based on attributes of both internal and external. The results of the analysis that is applied to the data multi attribute raw seismic and 5 volumes of external attributes, is called log porosity prediction, have a correlation value of 0.712 to log porosity original. And the value of its validation is 0.573. Meanwhile, Probabilistic Neural Network is producing log porosity prediction with correlation value of 0.661 and the value of its validation by 0485. Multi attribute based linear regression and probabilistic neural network, average porosity of the reservoir layer of carbonate of 10-15% in the north. Meanwhile, in the southern part, average porosity of just under 6%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43850
UI - Tesis Membership  Universitas Indonesia Library
cover
Maulana Senjaya Susilo
Abstrak :
ABSTRAK
Dengan semakin banyaknya bidang keilmuan yang menggunakan bantuan eye-tracker untuk mencapai terobosan baru di masing-masing bagiannya, titik fiksasi sebagai lokasi responden menghentikan pergerakan mata dan kemungkinan besar dilakukan untuk mencoba mencerna informasi yang terdapat di area tersebut lalu dijadikan pertimbangan untuk pengambilan keputusan menjadi sangat penting untuk diketahui. Menjawab kebutuhan tersebut, penulis mengembangkan sebuah model Neural Network menggunakan bantuan MATLAB untuk memprediksi output dari proses yang dilakukan terhadap titik fiksasi asli hasil percobaan eye-tracking dengan cara melatih dan menguji berbagai jenis kombinasi fungsi transfer antar layer dan fungsi training yang ada pada Neural Network dengan tujuan mencari kombinasi fungsi yang memberikan nilai MAPE (Mean Absolute Percent Error) dan MSE (Mean Squared Error) terkecil, jumlah iterasi training terkecil, dan durasi training yang paling singkat
ABSTRACT
With the increasing number of scientific fields which use the eye-tracker to achieve new breakthroughs in their each part, the fixation point as the location of the respondent to stop the movement of their eyes and most likely done to try to digest the information contained in the area and taken that information into consideration for the decision making to be very important to know. Answering this need, the authors developed a model of Neural Network using the help of MATLAB to predict the output from the process undertaken to original fixation point results of eye-tracking experiment by training and test various types of combinations of transfer functions between the layers and training functions that exist in Neural Network with the purpose of seeking a combination of functions that give the smallest MAPE (Mean Absolute Percent Error) and MSE (Mean Squared Error) value, the smallest number of training iterations, and the shortest duration of the training
2016
T45751
UI - Tesis Membership  Universitas Indonesia Library
cover
Liani Budi Rachman
Abstrak :
ABSTRAK
Kadar kolesterol yang tinggi dalam darah dapat memicu timbulnya penyakit jantung koroner. Berdasarkan data yang diperoleh dari Kementerian Kesehatan Republik Indonesia, penyakit jantung koroner merupakan penyebab kematian tertinggi kedua setelah stroke dengan persentase 12.9% pada tahun 2014. Selain kolesterol tinggi, kondisi stres yang tinggi juga dapat memicu berbagai penyakit seperti gangguan pencernaan, kecemasan, dan gangguan jantung. Sehingga pemeriksaan kesehatan sedini mungkin baik dengan metode alternatif maupun pemeriksaan secara medis perlu dilakukan.

Penelitian ini membahas mengenai deteksi kolesterol dan stres melalui pengamatan citra iris. Endapan lemak yang telah terbentuk di jaringan kornea menghasilkan keburaman di area terluar iris. Tanda ini merupakan indikasi dari ketidakseimbangan tubuh sebagai tanda kolesterol berlebih. Sedangkan tidak terbentuknya endapan lemak mengindikasikan kondisi kolesterol tidak tinggi. Sehingga dari pengamatan karakteristik iris ini, dapat dideteksi kondisi kolesterol tinggi dan kolesterol tidak tinggi. Lingkaran-lingkaran yang terbentuk pada iris atau yang disebut dengan cincin saraf mengindikasikan adanya ketegangan saraf berlebih. Cincin saraf terbentuk karena adanya iritabilitas, insomnia, ketidakseimbangan mental dan emosi seseorang. Sehingga tanda ini dapat mengindikasikan kondisi stres seseorang berupa bergejala stres atau tidak bergejala.

Deteksi kolesterol dan stres ini dibuat menggunakan metode Morphology Reconstruction untuk mengubah karakteristik penyakit lain pada ROI yang sama, Gray Level Co-occurence Matrix (GLCM) sebagai metode ekstraksi ciri, dan Backpropagation Neural Network (BNN) sebagai metode klasifikasi. Ciri yang digunakan dalam penelitian ini adalah entropy, contrast, correlation, energy, homogeneity, variance, dan difference variance. Dari hasil perancangan dengan jumlah citra pelatihan masing-masing sebesar 59 untuk deteksi kolesterol dan 53 untuk deteksi stres, diperoleh tingkat akurasi pengujian mencapai 96.49% untuk deteksi kolesterol dan 85.96% untuk deteksi stres dengan jumlah citra uji sebesar 57 citra.
ABSTRACT
High cholesterol levels in the blood can trigger coronary heart disease. Based on data obtained from the Ministry of Health of the Republic of Indonesia, coronary heart disease is the second highest cause of death with a percentage of 12.9% in 2014. Besides high cholesterol, high stress conditions can also trigger various diseases such as digestive disorders, anxiety, and heart problems. So people need to do health examinations as early as possible. This study discusses the detection of cholesterol and stress through observation of iris images. Fat deposits that have formed in the corneal tissue produce blur in the outer area of the iris. This sign is an indication of body imbalance as a sign of excess cholesterol. While the formation of fat deposits does not indicate the condition of cholesterol, it is identified as not high cholesterol. So from observing the characteristics of this iris, high cholesterol and not high cholesterol conditions can be detected. The circles that form on the iris or called as nerve ring indicate excessive nervous tension. The nerve ring is formed due to irritability, insomnia, mental and emotional imbalance in a person. So this sign can indicate a person's stress condition in the form of symptomatic stress or asymptomatic.

This cholesterol and stress detection is made using the Morphology Reconstruction method to change the characteristics of other diseases on the same Region of Interest, Gray Level Co-occurrence Matrix (GLCM) as a feature extraction method, and Backpropagation Neural Network (BNN) as a classification method. The characteristics used in this study are entropy, contrast, correlation, energy, homogeneity, variance, and difference variance. From the results of the design with the number of training images respectively 59 images for cholesterol detection and 53 images for stress detection, the accuracy of the test is 96.49% for cholesterol detection and 85.96% for stress detection with the number of testing images is 57 images.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
I Gusti Agung Agastya Tarumawijaya
Abstrak :

Berbagai metode pengembangan rekognisi citra wajah telah banyak dilakukan, berbagai metode seperti Deep Learning, Multilayer Perceptron sudah dilakukan. Metode Convolutional Neural Network juga sudah banyak dikembangkan untuk melakukan klasifikasi citra seperti rekognisi jenis bunga, hewan, hingga pendeteksian kecacatan sel. Convolutional Neural Network diharapkan mampu melakukan rekognisi citra wajah secara tiga dimensi. Operasi konvolusi sebagai bagian ekstraksi fitur pada Convolutional Neural Network, diharapkan dapat membantu bagian klasifikasi untuk melakukan tugasnya dengan lebih baik. Rekognisi citra wajah secara tiga dimensi ini sangat dibutuhkan, karena ketika kita ingin mendeteksi seseorang tanpa diketahui orang tersebut, maka dengan berbagai macam sudut hadap wajahnya sistem harus dapat mengidentifikasi orang tersebut. Untuk penelitian kali ini saya akan menggunakan dataset gambar wajah tiga dimensi yang akan digunakan sebagai klasifikasi parameter biometrik seseorang. Pada penelitian ini akan menganalisa tiap-tiap lapisan pada Convolutional Neural Network, serta melakukan perbandingan dengan Backpropagation Neural Network. Dan juga akan melakukan analisa dengan menggunakan citra wajah berderau.


Various methods of developing facial image recognition have been carried out, various methods such as Deep Learning and Radial Basis Function Neural Network have been carried out. Convolutional Neural Network methods have also been developed to carry out image classifications such as recognition of types of flowers, animals, and detection of cell defects. Convolutional Neural Network is expected to be able to recognize facial images in three dimensions. Convolution operations as a feature extraction part of the Convolutional Neural Network are expected to help the classification section to do their job better. Three-dimensional face image recognition is needed, because when we want to detect someone without knowing by the person, then with a variety of face angles, the system must be able to identify that person. For this research I will use a three-dimensional face image dataset that will be used as a classification of a persons biometric parameters. In this study, we will analyze each layer in the Convolutional Neural Network, do a comparison with Backpropagation Neural Network. And also will do the analysis by using a noisy face image.

Depok: Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Caudill, Maureen
Cambridge, UK: MIT Press, 1990
006.3 CAU n
Buku Teks  Universitas Indonesia Library
cover
Goles, Eric
Boston: Kluwer, 1990
006.3 GOL n
Buku Teks  Universitas Indonesia Library
cover
Mead, Carver A.
Reading, Mass. : Addison-Wesley, 1989
621.395 MEA a
Buku Teks  Universitas Indonesia Library
cover
Bondan Priyambodo
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38437
UI - Skripsi Membership  Universitas Indonesia Library
cover
David
Abstrak :
Pertumbuhan ekonomi yang diikuti dengan pertumbuhan penduduk yang tinggi di Indonesia menyebabkan kebutuhan Indonesia terhadap sumber energi semakin meningkat dimana sumber energi yang murah dan mudah didapatkan ialah batu bara. Di satu sisi, kapasitas produksi tambang Indonesia cukup rendah. Namun, tingkat kapasitas produksi berbanding terbalik dengan cadangan mineral dan batu bara Indonesia yang berlimpah. Hal ini memunculkan masalah bagaimana meningkatkan kapasitas produksi tambang Indonesia. Salah satu faktor yang sangat mempengaruhi kapasitas produksi tambang Indonesia adalah peningkatan variabilitas curah hujan. Penelitian ini akan membandingkan 3 model, yaitu Autoregressive Integrated Moving Average (ARIMA), stepwise regression dan neural network untuk mendapatkan model prediktif curah hujan yang dapat digunakan untuk merencanakan kapasitas produksi batu bara di tambang terbuka. Hasil eksekusi model akan dievaluasi dengan Root Mean Squared Error (RMSE). Hasil evaluasi menunjukkan model neural network menghasilkan performa paling baik dibandingkan dengan ketiga model lainnya dimana model neural network memiliki nilai RMSE yang paling kecil.
Economic growth followed by a high population growth in Indonesia has increased the demand of energy sources which coal is the cheapest and highest availability energy sources. On the other hand, mining production capacity of Indonesia is relatively low. However, the level of production capacity is inversely proportional to abundant mineral and coal reserves of Indonesia. The ability to improve mining production capacity of Indonesia has been an important problem. One of the factors that greatly influences mining production capacity of Indonesia is variability in rainfall pattern. This study will compare three models, which are Autoregressive Integrated Moving Average (ARIMA), stepwise regression and neural network in order to obtain a predictive rainfall model that can be used on planning coal production capacity in open pit mining. The results of the model will be evaluated with Root Means Square Error (RMSE). The evaluation results show that neural network model produces the best performance compared to other three models whose RMSE is the smallest.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>