Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Anindya Adiwardhana
Abstrak :
Optimasi desain reaktor merupakan salah satu tahap penting dalam usaha peningkatan produksi karbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Untuk mendukung hal ini, maka diperlukan suatu persamaan kinetika matematis yang akurat dan berlaku untuk kondisi operasi yang lebar. Pada penelitian, dilakukan studi kinetika reaksi dekomposisi katalitik metana menggunakan katalis Ni-Cu-Al dengan target komposisi 2:1:1 yang dipreparasi dengan metode kopresipitasi menggunakan presipitan larutan sodium karbonat. Penelitian diawali dengan memformulasikan beberapa model persamaan kinetika dengan pendekatan analisis kinetika mikro (adsorpsi isotermis). Masing-masing model persamaan kinetika kemudian diuji dengan data kinetika yang diperoleh secara eksperimental. Data kinetika eksperimental diambil dengan variasi temperatur dari 650 °C sampai 750 °C pada tekanan amosferik kemudian data tersebut lalu diuji dengan model kinetika mikro yang diturunkan dari mekanisme reaksi permukaan katalis dan didapat model kinetika yang paling representatif dengan eksperimen adalah model kinetika reaksi adsorpsi metana sebagai tahap pembatas laju reaksi dengan energi aktivasi yang dibutuhkan 40.6 kJ/mol dan faktor pra-eksponensial sebesar 0.02.
Optimization of reactor design is one important step in efforts to increase production of carbon nanotubes and hydrogen via methane catalytic decomposition reaction. To support this, it needs an accurate mathematical kinetic equation and is valid for a wide operating conditions. In the study, carried out the reaction kinetics study of catalytic decomposition of methane using the catalyst Ni-Cu-Al with a target composition of 2:1:1 which was prepared with coprecipitation method using sodium carbonate as a precipitating solution. The research began by formulating a model kinetic equation with kinetic microanalysis approach (adsorption isotherm). Each kinetic equation model was then tested with kinetic data obtained experimentally. Experimental kinetic data were taken with temperature variation from 650 °C to 750 °C at atmospheric pressure Then data can then be tested with a micro kinetic model derived from the surface of the catalyst and the reaction mechanism obtained the most representative model of the kinetics experiment is a model adsorption of methane as a limiting step reaction rate with activation energy 40.6 kJ / mol and pre-exponential factor of 0.02.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51022
UI - Skripsi Open  Universitas Indonesia Library
cover
Febrini Cesarina
Abstrak :
Dekomposisi katalitik metana merupakan salah satu metode yang paling sering digunakan dalam memproduksi carbon nanotube (CNT). Penggunaan reaktor unggun tetap untuk reaksi dekomposisi katalitik metana cukup banyak diminati karena desainnya yang sederhana dan ekonomis. Agar kinerja reaktor yang optimal dapat diperoleh, perlu dilakukan serangkaian uji coba terhadap pengaruh dari berbagai kondisi operasi melalui pemodelan dan simulasi. Pada penelitian ini, dibentuk suatu pemodelan dan simulasi reaktor unggun tetap untuk reaksi dekomposisi katalitik dengan memvariasikan berbagai parameter operasi yang dapat mempengaruhi kinerja reaktor. Konversi metana dan yield hidrogen yang dapat dicapai pada saat reaksi 60 menit adalah sebesar 34.4% dan 42.7%. Kenaikan pada tekanan, laju alir, komposisi umpan dan radius partikel akan memperkecil konversi dan yield, sementara kenaikan pada temperatur umpan berlaku sebaliknya. Kondisi operasi yang memberikan konversi dan yield terbesar, yaitu 43.3% dan 51.5%, adalah pada saat temperatur umpan sebesar 1023 K dengan radius partikel sebesar 0.10 mm.
Catalytic decomposition of methane (CDM) is one of the most popular method used in producing carbon nanotube (CNT). The use of fixed bed reactor in catalytic reaction is common for its simple design and low prices. In order to get an optimal condition to the reactor, observing which parameters gives influence most to the reactor is needed to be done by modelling and simulation. This thesis is proposed a modelling and simulation of fixed bed reactor for catalytic decomposition of methane by varying the values of operating parameters which influence the reactor performance. The methane conversion dan hydrogen yield obtained at 60 minutes reaction are 34.4% dan 42.7%. The increasing feed pressure, velocity, particle radius and composition decrease conversion and yield significantly, while the decreasing feed temperature results in opposite. An optimal condition obtained when using feed temperatur at 1023 K and radius particle at 0.10 mm, which gives highest conversion and yield, 43.3% and 51.5% in result.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32582
UI - Tesis Membership  Universitas Indonesia Library
cover
Ernawati Munir
Abstrak :
Nanokarbon merupakan salah satu produk nanoteknologi yang dapat diperoleh melalui Dekomposisi Katalitik Metana atau Methane Decomposition Reaction (MDR). Penentuan kondisi optimum proses diperlukan untuk menghasilkan nanokarbon dengan kualitas baik. Pada penelitian ini dilakukan analisis korelasi dan signifikansi variabel proses terhadap respon konversi metana menggunakan metode ANOVA. Kondisi operasi yang divariasikan adalah suhu reaksi dengan rentang 650°C-750°C, waktu reaksi rentang 5-40 menit dan laju alir metana pada 120 mL/menit - 160 mL/menit. Proses penentuan kondisi optimum dilakukan dengan metode respon permukaan. Eksperimen dilakukan dalam 2 tahap, yaitu orde I dan orde II. Desain eksperimen pada tahap orde satu menggunakan desain faktorial dua level, sedangkan desain eksperimen pada tahap orde dua menggunakan Central Composite Design (CCD). Hasil penelitian menunjukkan aplikasi metode respon permukaan pada eksperimen mendapatkan konversi optimum nanokarbon pada suhu reaksi 716°C dengan laju alir 118 mL/menit dan waktu reaksi 20 menit. ......Nanocarbon,as one of the nanotechnology product is produced by Methane Decomposition Reaction (MDR). Identification of optimum process required to produce nanocarbon with good quality. In this experiment conducted a correlation analysis and significance of process variable on the response of methane conversion using ANOVA methode. Operation parameter for reaction temperature was varied in the range 650°C-750°C, reaction time on the range 5-40 minutes and methane flow rate at 120 mL/minute - 160 mL/minute. Optimum process was conducted with Response Surface Methodology. The experiments was done in two steps, that's first orde and second orde. Design of experiment on the first orde was done with two level factorial design and design of experiment on the second orde was done using Central Composite Design (CCD). The results of experiment show that response surface methodology application in experiment give optimum conversion of the methane at 716°C reaction temperature with a flow rate 118 mL/minute and reaction time 20 minutes.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43199
UI - Skripsi Open  Universitas Indonesia Library