Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Muhammad Rias Agnini Majdi
Abstrak :
Jenis-jenis alat musik yang digunakan dalam suatu musik adalah salah satu cara menjelaskan musik tersebut. Skripsi ini membahas penggunaan ekstraksi fitur MFCC dan metode klasifikasi k-NN untuk mengklasifikasi alat musik berdasarkan suara yang dihasilkannya. MFCC merupakan sebuah metode yang mampu mengolah sebuah data suara sehingga menghasilkan beberapa fitur yang bersifat numerik. k-NN merupakan sebuah metode klasifikasi yang menggunakan jarak dari fitur tiap-tiap observasi. Pengerjaan skripsi dilakukan dengan mengekstraksi fitur dari data-data suara yang tersedia dengan MFCC lalu menggunakan fitur-fitur yang diekstraksi tersebut untuk metode klasifikasi k-NN. Data yang digunakan adalah data suara alat musik yang tersedia pada dataset Philharmonia Orchestra Sound Samples. Hasil dari penerapan metode klasifikasi k-NN pada skripsi ini menunjukkan bahwa model k-NN mampu meraih nilai akurasi hingga 94,84%.


Instrumentation is one way to describe a music. This study discusses the use of MFCC feature extraction and k-NN classification method to classify instruments by the sound they produce. MFCC is a method capable of processing a sound data into a set of numeric features. k-NN is a classification method that uses the distance of the features of each observations. The process of this study uses MFCC to extract the features of available sound data and use these extracted features to fit a k-NN model. The data used in this study are the sound data available in the Philharmonia Orchestra Sound Samples dataset. The result of k-NN model fitting in this study shows that the model is capable of reaching an accuracy of 94.84%.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library